update typo and structures

This commit is contained in:
Trance-0
2024-12-16 13:41:24 -06:00
parent ce830c9943
commit d471db49c4
24 changed files with 328 additions and 219 deletions

View File

@@ -1,6 +1,10 @@
# Lecture 13
## Pseudorandom Generator (PRG)
## Chapter 3: Indistinguishability and Pseudorandomness
### Pseudorandom Generator (PRG)
#### Definition 77.1 (Pseudorandom Generator)
$G:\{0,1\}^n\to\{0,1\}^{l(n)}$ is a pseudorandom generator if the following is true:
@@ -8,7 +12,7 @@ $G:\{0,1\}^n\to\{0,1\}^{l(n)}$ is a pseudorandom generator if the following is t
2. $l(n)> n$ (expansion)
3. $\{x\gets \{0,1\}^n:G(x)\}_n\approx \{u\gets \{0,1\}^{l(n)}\}$
### Hard-core bit (predicate) (HCB)
#### Definition 78.3 (Hard-core bit (predicate) (HCB))
Hard-core bit (predicate) (HCB): $h:\{0,1\}^n\to \{0,1\}$ is a hard-core bit of $f:\{0,1\}^n\to \{0,1\}^*$ if for every adversary $A$,
@@ -131,7 +135,7 @@ $G'$ is a PRG:
1. Efficiently computable: since we are computing $G'$ by applying $G$ multiple times (polynomial of $l(n)$ times).
2. Expansion: $n<l(n)$.
3. Pseudorandomness: We proceed by contradiction. Suppose the output is not pseudorandom. Then there exists a distinguisher $D$ that can distinguish $G'$ from $U_{l(n)}$ with advantage $\frac{1}{2}+\epsilon(n)$.
3. Pseudorandomness: We proceed by contradiction. Suppose the output is not pseudorandom. Then there exists a distinguisher $\mathcal{D}$ that can distinguish $G'$ from $U_{l(n)}$ with advantage $\frac{1}{2}+\epsilon(n)$.
Strategy: use hybrid argument to construct distributions.
@@ -145,9 +149,9 @@ H^{l(n)}&=b_1b_2\cdots b_{l(n)}
\end{aligned}
$$
By the hybrid argument, there exists an $i$ such that $D$ can distinguish $H^i$ and $H^{i+1}$ $0\leq i\leq l(n)-1$ by $\frac{1}{p(n)l(n)}$
By the hybrid argument, there exists an $i$ such that $\mathcal{D}$ can distinguish $H^i$ and $H^{i+1}$ $0\leq i\leq l(n)-1$ by $\frac{1}{p(n)l(n)}$
Show that there exists $D$ for
Show that there exists $\mathcal{D}$ for
$$
\{u\gets U_{n+1}\}\text{ vs. }\{x\gets U_n;G(x)=u\}