update typo and structures
This commit is contained in:
@@ -1,6 +1,10 @@
|
||||
# Lecture 13
|
||||
|
||||
## Pseudorandom Generator (PRG)
|
||||
## Chapter 3: Indistinguishability and Pseudorandomness
|
||||
|
||||
### Pseudorandom Generator (PRG)
|
||||
|
||||
#### Definition 77.1 (Pseudorandom Generator)
|
||||
|
||||
$G:\{0,1\}^n\to\{0,1\}^{l(n)}$ is a pseudorandom generator if the following is true:
|
||||
|
||||
@@ -8,7 +12,7 @@ $G:\{0,1\}^n\to\{0,1\}^{l(n)}$ is a pseudorandom generator if the following is t
|
||||
2. $l(n)> n$ (expansion)
|
||||
3. $\{x\gets \{0,1\}^n:G(x)\}_n\approx \{u\gets \{0,1\}^{l(n)}\}$
|
||||
|
||||
### Hard-core bit (predicate) (HCB)
|
||||
#### Definition 78.3 (Hard-core bit (predicate) (HCB))
|
||||
|
||||
Hard-core bit (predicate) (HCB): $h:\{0,1\}^n\to \{0,1\}$ is a hard-core bit of $f:\{0,1\}^n\to \{0,1\}^*$ if for every adversary $A$,
|
||||
|
||||
@@ -131,7 +135,7 @@ $G'$ is a PRG:
|
||||
|
||||
1. Efficiently computable: since we are computing $G'$ by applying $G$ multiple times (polynomial of $l(n)$ times).
|
||||
2. Expansion: $n<l(n)$.
|
||||
3. Pseudorandomness: We proceed by contradiction. Suppose the output is not pseudorandom. Then there exists a distinguisher $D$ that can distinguish $G'$ from $U_{l(n)}$ with advantage $\frac{1}{2}+\epsilon(n)$.
|
||||
3. Pseudorandomness: We proceed by contradiction. Suppose the output is not pseudorandom. Then there exists a distinguisher $\mathcal{D}$ that can distinguish $G'$ from $U_{l(n)}$ with advantage $\frac{1}{2}+\epsilon(n)$.
|
||||
|
||||
Strategy: use hybrid argument to construct distributions.
|
||||
|
||||
@@ -145,9 +149,9 @@ H^{l(n)}&=b_1b_2\cdots b_{l(n)}
|
||||
\end{aligned}
|
||||
$$
|
||||
|
||||
By the hybrid argument, there exists an $i$ such that $D$ can distinguish $H^i$ and $H^{i+1}$ $0\leq i\leq l(n)-1$ by $\frac{1}{p(n)l(n)}$
|
||||
By the hybrid argument, there exists an $i$ such that $\mathcal{D}$ can distinguish $H^i$ and $H^{i+1}$ $0\leq i\leq l(n)-1$ by $\frac{1}{p(n)l(n)}$
|
||||
|
||||
Show that there exists $D$ for
|
||||
Show that there exists $\mathcal{D}$ for
|
||||
|
||||
$$
|
||||
\{u\gets U_{n+1}\}\text{ vs. }\{x\gets U_n;G(x)=u\}
|
||||
|
||||
Reference in New Issue
Block a user