update typo and structures

This commit is contained in:
Trance-0
2024-12-16 13:41:24 -06:00
parent ce830c9943
commit d471db49c4
24 changed files with 328 additions and 219 deletions

View File

@@ -4,52 +4,59 @@
Negligible function $\epsilon(n)$ if $\forall c>0,\exist N$ such that $n>N$, $\epsilon (n)<\frac{1}{n^c}$
Ex: $\epsilon(n)=2^{-n},\epsilon(n)=\frac{1}{n^{\log (\log n)}}$
Example:
### Strong One-Way Function
$\epsilon(n)=2^{-n},\epsilon(n)=\frac{1}{n^{\log (\log n)}}$
## Chapter 2: Computational Hardness
### One-way function
#### Strong One-Way Function
1. $\exists$ a P.P.T. that computes $f(x),\forall x\in\{0,1\}^n$
2. $\forall a$ adversaries, $\exists \epsilon(n),\forall n$.
$$
P[x\gets \{0,1\}^n;y=f(x):f(a(y,1^n))=y]<\epsilon(n)
$$
2. $\forall \mathcal{A}$ adversaries, $\exists \epsilon(n),\forall n$.
_That is, the probability of success guessing should decreasing as encrypted message increase..._
$$
P[x\gets \{0,1\}^n;y=f(x):f(\mathcal{A}(y,1^n))=y]<\epsilon(n)
$$
_That is, the probability of success guessing should decreasing (exponentially) as encrypted message increase (linearly)..._
To negate statement 2:
$$
P[x\gets \{0,1\}^n;y=f(x):f(a(y,1^n))=y]=\mu_a(n)
P[x\gets \{0,1\}^n;y=f(x):f(\mathcal{A}(y,1^n))=y]=\mu(n)
$$
is a negligible function.
Negation:
$\exists a$, $P[x\gets \{0,1\}^n;y=f(x):f(a(y,1^n))=y]=\mu_a(n)$ is not a negligible function.
$\exists \mathcal{A}$, $P[x\gets \{0,1\}^n;y=f(x):f(\mathcal{A}(y,1^n))=y]=\mu(n)$ is not a negligible function.
That is, $\exists c>0,\forall N \exists n>N \epsilon(n)>\frac{1}{n^c}$
$\mu_a(n)>\frac{1}{n^c}$ for infinitely many $n$. or infinitely often.
$\mu(n)>\frac{1}{n^c}$ for infinitely many $n$. or infinitely often.
> Keep in mind: $P[success]=\frac{1}{n^c}$, it can try $O(n^c)$ times and have a good chance of succeeding at least once.
## New materials
### Weak one-way function
#### Definition 28.4 (Weak one-way function)
$f:\{0,1\}^n\to \{0,1\}^*$
1. $\exists$ a P.P.T. that computes $f(x),\forall x\in\{0,1\}^n$
2. $\forall a$ adversaries, $\exists \epsilon(n),\forall n$.
$$
P[x\gets \{0,1\}^n;y=f(x):f(a(y,1^n))=y]<1-\frac{1}{p(n)}
$$
_The probability of success should not be too close to 1_
2. $\forall \mathcal{A}$ adversaries, $\exists \epsilon(n),\forall n$.
$$
P[x\gets \{0,1\}^n;y=f(x):f(\mathcal{A}(y,1^n))=y]<1-\frac{1}{p(n)}
$$
_The probability of success should not be too close to 1_
### Probability
### Useful bound $0<p<1$
#### Useful bound $0<p<1$
$1-p<e^{-p}$
@@ -59,9 +66,11 @@ For an experiment has probability $p$ of failure and $1-p$ of success.
We run experiment $n$ times independently.
$P[$success all n times$]=(1-p)^n<(e^{-p})^n=e^{-np}$
$P[\text{success all n times}]=(1-p)^n<(e^{-p})^n=e^{-np}$
Theorem: If there exists a weak one-way function, there there exists a strong one-way function
#### Theorem 35.1 (Strong one-way function from weak one-way function)
If there exists a weak one-way function, there there exists a strong one-way function
In particular, if $f:\{0,1\}^n\to \{0,1\}^*$ is weak one-way function.
@@ -99,14 +108,16 @@ Example: $(1-\frac{1}{n^2})^{n^3}<e^{-n}$
#### Multiplication
$Mult(m_1,m_2)=\begin{cases}
$$
Mult(m_1,m_2)=\begin{cases}
1,m_1=1 | m_2=1\\
m_1\cdot m_2
\end{cases}$
\end{cases}
$$
But we don't want trivial answers like (1,1000000007)
Idea: Our "secret" is 373 and 481, Eve cna see the product 179413.
Idea: Our "secret" is 373 and 481, Eve can see the product 179413.
Not strong one-way for all integer inputs because there are trivial answer for $\frac{3}{4}$ of all outputs. `Mult(2,y/2)`
@@ -126,4 +137,4 @@ $$
P[p_1\gets \Pi_n;p_2\gets \Pi_n;N=p_1\cdot p_2:a(n)=\{p_1,p_2\}]<\epsilon(n)
$$
where $\Pi_n=\{$ all primes $p<2^n\}$
where $\Pi_n=\{p\text{ all primes }p<2^n\}$