update typo and structures
This commit is contained in:
@@ -4,52 +4,59 @@
|
||||
|
||||
Negligible function $\epsilon(n)$ if $\forall c>0,\exist N$ such that $n>N$, $\epsilon (n)<\frac{1}{n^c}$
|
||||
|
||||
Ex: $\epsilon(n)=2^{-n},\epsilon(n)=\frac{1}{n^{\log (\log n)}}$
|
||||
Example:
|
||||
|
||||
### Strong One-Way Function
|
||||
$\epsilon(n)=2^{-n},\epsilon(n)=\frac{1}{n^{\log (\log n)}}$
|
||||
|
||||
## Chapter 2: Computational Hardness
|
||||
|
||||
### One-way function
|
||||
|
||||
#### Strong One-Way Function
|
||||
|
||||
1. $\exists$ a P.P.T. that computes $f(x),\forall x\in\{0,1\}^n$
|
||||
2. $\forall a$ adversaries, $\exists \epsilon(n),\forall n$.
|
||||
$$
|
||||
P[x\gets \{0,1\}^n;y=f(x):f(a(y,1^n))=y]<\epsilon(n)
|
||||
$$
|
||||
2. $\forall \mathcal{A}$ adversaries, $\exists \epsilon(n),\forall n$.
|
||||
|
||||
_That is, the probability of success guessing should decreasing as encrypted message increase..._
|
||||
$$
|
||||
P[x\gets \{0,1\}^n;y=f(x):f(\mathcal{A}(y,1^n))=y]<\epsilon(n)
|
||||
$$
|
||||
|
||||
_That is, the probability of success guessing should decreasing (exponentially) as encrypted message increase (linearly)..._
|
||||
|
||||
To negate statement 2:
|
||||
|
||||
$$
|
||||
P[x\gets \{0,1\}^n;y=f(x):f(a(y,1^n))=y]=\mu_a(n)
|
||||
P[x\gets \{0,1\}^n;y=f(x):f(\mathcal{A}(y,1^n))=y]=\mu(n)
|
||||
$$
|
||||
|
||||
is a negligible function.
|
||||
|
||||
Negation:
|
||||
|
||||
$\exists a$, $P[x\gets \{0,1\}^n;y=f(x):f(a(y,1^n))=y]=\mu_a(n)$ is not a negligible function.
|
||||
$\exists \mathcal{A}$, $P[x\gets \{0,1\}^n;y=f(x):f(\mathcal{A}(y,1^n))=y]=\mu(n)$ is not a negligible function.
|
||||
|
||||
That is, $\exists c>0,\forall N \exists n>N \epsilon(n)>\frac{1}{n^c}$
|
||||
|
||||
$\mu_a(n)>\frac{1}{n^c}$ for infinitely many $n$. or infinitely often.
|
||||
$\mu(n)>\frac{1}{n^c}$ for infinitely many $n$. or infinitely often.
|
||||
|
||||
> Keep in mind: $P[success]=\frac{1}{n^c}$, it can try $O(n^c)$ times and have a good chance of succeeding at least once.
|
||||
|
||||
## New materials
|
||||
|
||||
### Weak one-way function
|
||||
#### Definition 28.4 (Weak one-way function)
|
||||
|
||||
$f:\{0,1\}^n\to \{0,1\}^*$
|
||||
|
||||
1. $\exists$ a P.P.T. that computes $f(x),\forall x\in\{0,1\}^n$
|
||||
2. $\forall a$ adversaries, $\exists \epsilon(n),\forall n$.
|
||||
$$
|
||||
P[x\gets \{0,1\}^n;y=f(x):f(a(y,1^n))=y]<1-\frac{1}{p(n)}
|
||||
$$
|
||||
_The probability of success should not be too close to 1_
|
||||
2. $\forall \mathcal{A}$ adversaries, $\exists \epsilon(n),\forall n$.
|
||||
|
||||
$$
|
||||
P[x\gets \{0,1\}^n;y=f(x):f(\mathcal{A}(y,1^n))=y]<1-\frac{1}{p(n)}
|
||||
$$
|
||||
|
||||
_The probability of success should not be too close to 1_
|
||||
|
||||
### Probability
|
||||
|
||||
### Useful bound $0<p<1$
|
||||
#### Useful bound $0<p<1$
|
||||
|
||||
$1-p<e^{-p}$
|
||||
|
||||
@@ -59,9 +66,11 @@ For an experiment has probability $p$ of failure and $1-p$ of success.
|
||||
|
||||
We run experiment $n$ times independently.
|
||||
|
||||
$P[$success all n times$]=(1-p)^n<(e^{-p})^n=e^{-np}$
|
||||
$P[\text{success all n times}]=(1-p)^n<(e^{-p})^n=e^{-np}$
|
||||
|
||||
Theorem: If there exists a weak one-way function, there there exists a strong one-way function
|
||||
#### Theorem 35.1 (Strong one-way function from weak one-way function)
|
||||
|
||||
If there exists a weak one-way function, there there exists a strong one-way function
|
||||
|
||||
In particular, if $f:\{0,1\}^n\to \{0,1\}^*$ is weak one-way function.
|
||||
|
||||
@@ -99,14 +108,16 @@ Example: $(1-\frac{1}{n^2})^{n^3}<e^{-n}$
|
||||
|
||||
#### Multiplication
|
||||
|
||||
$Mult(m_1,m_2)=\begin{cases}
|
||||
$$
|
||||
Mult(m_1,m_2)=\begin{cases}
|
||||
1,m_1=1 | m_2=1\\
|
||||
m_1\cdot m_2
|
||||
\end{cases}$
|
||||
\end{cases}
|
||||
$$
|
||||
|
||||
But we don't want trivial answers like (1,1000000007)
|
||||
|
||||
Idea: Our "secret" is 373 and 481, Eve cna see the product 179413.
|
||||
Idea: Our "secret" is 373 and 481, Eve can see the product 179413.
|
||||
|
||||
Not strong one-way for all integer inputs because there are trivial answer for $\frac{3}{4}$ of all outputs. `Mult(2,y/2)`
|
||||
|
||||
@@ -126,4 +137,4 @@ $$
|
||||
P[p_1\gets \Pi_n;p_2\gets \Pi_n;N=p_1\cdot p_2:a(n)=\{p_1,p_2\}]<\epsilon(n)
|
||||
$$
|
||||
|
||||
where $\Pi_n=\{$ all primes $p<2^n\}$
|
||||
where $\Pi_n=\{p\text{ all primes }p<2^n\}$
|
||||
Reference in New Issue
Block a user