update typo and structures
This commit is contained in:
@@ -8,9 +8,11 @@ $$
|
||||
|
||||
is a weak one-way.
|
||||
|
||||
$P[a\ invert]\leq 1-\frac{1}{8n^2}$ over $x,y\in$ random integers $\{0,1\}^n$
|
||||
$P[\mathcal{A}\ \text{invert}]\leq 1-\frac{1}{8n^2}$ over $x,y\in$ random integers $\{0,1\}^n$
|
||||
|
||||
## Converting to strong one-way function
|
||||
## Chapter 2: Computational Hardness
|
||||
|
||||
### Converting weak one-way function to strong one-way function
|
||||
|
||||
By factoring assumptions, $\exists$ strong one-way function
|
||||
|
||||
@@ -22,7 +24,7 @@ $f:\{0,1\}^{8n^4}\to \{0,1\}^{8n^4}$
|
||||
|
||||
Idea: With high probability, at least one pair $(x_i,y_i)$ are both prime.
|
||||
|
||||
Factoring assumption: $a$ has low chance of factoring $f_{mult}(x_i,y_i)$
|
||||
Factoring assumption: $\mathcal{A}$ has low chance of factoring $f_{mult}(x_i,y_i)$
|
||||
|
||||
Use $P[x \textup{ is prime}]\geq\frac{1}{2n}$
|
||||
|
||||
@@ -34,13 +36,13 @@ $$
|
||||
P[\forall p,q \in x_i,y_i, p\textup{ and } q \textup{ is not prime }]\leq(1-\frac{1}{4n^2})^{4n^3}\leq (e^{-\frac{1}{4n^2}})^{4n^3}=e^{-n}
|
||||
$$
|
||||
|
||||
### Proof of strong one-way
|
||||
### Proof of strong one-way function
|
||||
|
||||
1. $f_{mult}$ is efficiently computable, and we compute it poly-many times.
|
||||
2. Suppose it's not hard to invert. Then
|
||||
$\exists n.u.p.p.t.\ a$such that $P[w\gets \{0,1\}^{8n^4};z=f(w):f(a(z))=0]=\mu (n)>\frac{1}{p(n)}$
|
||||
$\exists \text{n.u.p.p.t.}\ \mathcal{A}$such that $P[w\gets \{0,1\}^{8n^4};z=f(w):f(\mathcal{A}(z))=0]=\mu (n)>\frac{1}{p(n)}$
|
||||
|
||||
We will use this to construct $B$ that breaks factoring assumption.
|
||||
We will use this to construct $\mathcal{B}$ that breaks factoring assumption.
|
||||
|
||||
$p\gets \Pi_n,q\gets \Pi_n,N=p\cdot q$
|
||||
|
||||
@@ -64,11 +66,11 @@ function B:
|
||||
|
||||
Let $E$ be the event that all pairs of sampled integers were not both prime.
|
||||
|
||||
Let $F$ be the event that $a$ failed to invert
|
||||
Let $F$ be the event that $\mathcal{A}$ failed to invert
|
||||
|
||||
$P(B\ fails)\leq P[E\cup F]\leq P[E]+P[F]\leq e^{-n}+(1-\frac{1}{p(n)})=1-(\frac{1}{p(n)}-e^{-n})\leq 1-\frac{1}{2p(n)}$
|
||||
$P[\mathcal{B} \text{ fails}]\leq P[E\cup F]\leq P[E]+P[F]\leq e^{-n}+(1-\frac{1}{p(n)})=1-(\frac{1}{p(n)}-e^{-n})\leq 1-\frac{1}{2p(n)}$
|
||||
|
||||
$P[B\ succeeds]=P[p\gets \Pi_n,q\gets \Pi_n,N=p\cdot q:B(N)\in \{p,q\}]\geq \frac{1}{2p(n)}$
|
||||
$P[\mathcal{B} \text{ succeeds}]=P[p\gets \Pi_n,q\gets \Pi_n,N=p\cdot q:\mathcal{B}(N)\in \{p,q\}]\geq \frac{1}{2p(n)}$
|
||||
|
||||
Contradicting factoring assumption
|
||||
|
||||
@@ -87,10 +89,10 @@ $F=\{f_i:D_i\to R_i\},i\in I$, $I$ is the index set.
|
||||
1. We can effectively choose $i\gets I$ using $Gen$.
|
||||
2. $\forall i$ we ca efficiently sample $x\gets D_i$.
|
||||
3. $\forall i\forall x\in D_i,f_i(x)$ is efficiently computable
|
||||
4. For any n.u.p.p.t $a$, $\exists$ negligible function $\epsilon (n)$.
|
||||
$P[i\gets Gen(1^n);x\gets D_i;y=f_i(x):f(a(y,i,1^n))=y]\leq \epsilon(n)$
|
||||
4. For any n.u.p.p.t $\mathcal{A}$, $\exists$ negligible function $\epsilon (n)$.
|
||||
$P[i\gets Gen(1^n);x\gets D_i;y=f_i(x):f(\mathcal{A}(y,i,1^n))=y]\leq \epsilon(n)$
|
||||
|
||||
#### Theorem
|
||||
#### An instance of strong one-way function under factoring assumption
|
||||
|
||||
$f_{mult,n}:(\Pi_n\times \Pi_n)\to \{0,1\}^{2n}$ is a collection of strong one way function.
|
||||
|
||||
@@ -107,8 +109,6 @@ Algorithm for sampling a random prime $p\gets \Pi_n$
|
||||
- Deterministic poly-time procedure
|
||||
- In practice, a much faster randomized procedure (Miller-Rabin) used
|
||||
|
||||
$P[x\cancel{\in} prime|test\ said\ x\ prime]<\epsilon(n)$
|
||||
$P[x\cancel{\in} \text{prime}|\text{test said x prime}]<\epsilon(n)$
|
||||
|
||||
3. If not, repeat. Do this for polynomial number of times
|
||||
|
||||
> $;$ means and, $:$ means given that. $1$ usually interchangable with $\{0,1\}^n$
|
||||
|
||||
Reference in New Issue
Block a user