update typo and structures

This commit is contained in:
Trance-0
2024-12-16 13:41:24 -06:00
parent ce830c9943
commit d471db49c4
24 changed files with 328 additions and 219 deletions

View File

@@ -1,6 +1,8 @@
# Lecture 8
## Computational number theory/arithmetic
## Chapter 2: Computational Hardness
### Computational number theory/arithmetic
We want to have a easy-to-use one-way functions for cryptography.
@@ -29,16 +31,16 @@ _looks like fast exponentiation right?_
Goal: $f_{g,p}(x)=g^x\mod p$ is a one-way function, for certain choice of $p,g$ (and assumptions)
### A group (Nice day one for MODERN ALGEBRA)
#### A group (Nice day one for MODERN ALGEBRA)
A group $G$ is a set with, a binary operation $\oplus$. and $\forall a,b\in G$, $a \oplus b\to c$
1. $a,b\in G,a\oplus b\in G$
2. $(a\oplus b)\oplus c=a\oplus(b\oplus c)$
3. $\exists e$ such that $\forall a\in G, e\oplus g=g=g\oplus e$
4. $\exists g^{-1}\in G$ such that $g\oplus g^{-1}=e$
1. $a,b\in G,a\oplus b\in G$ (closure)
2. $(a\oplus b)\oplus c=a\oplus(b\oplus c)$ (associativity)
3. $\exists e$ such that $\forall a\in G, e\oplus g=g=g\oplus e$ (identity element)
4. $\exists g^{-1}\in G$ such that $g\oplus g^{-1}=e$ (inverse element)
Example:
Example:
- $\mathbb{Z}_N=\{0,1,2,3,...,N-1\}$ with addition $\mod N$, with identity element $0$. $a\in \mathbb{Z}_N, a^{-1}=N-a$.
- A even simpler group is $\Z$ with addition.
@@ -49,13 +51,13 @@ Example:
- Let $a\in \mathbb{Z}_N^*$, by Euclidean algorithm, $gcd(a,N)=1$,$\exists x,y \in Z$ such that $ax+Ny=1,ax\equiv 1\mod N,x=a^{-1}$
- $a,b\in \mathbb{Z}_N^*$. Want to show $gcd(ab,N)=1$. If $gcd(ab,N)=d>1$, then some prime $p|d$. so $p|(a,b)$, which means $p|a$ or $p|b$. In either case, $gcd(a,N)>d$ or $gcd(b,N)>d$, which contradicts that $a,b\in \mathbb{C}_N^*$
### Euler's totient function
#### Euler's totient function
$\phi:\mathbb{Z}^+\to \mathbb{Z}^+,\phi(N)=|\mathbb{Z}_N^*|=|\{1\leq x\leq N:gcd(x,N)=1\}|$
Example: $\phi(1)=1$, $\phi(24)=8$, $\phi (p)=p-1$, $\phi(p\cdot q)=(p-1)(q-1)$
### Euler's Theorem
#### Euler's Theorem
For any $a\in \mathbb{Z}_N^*$, $a^{\phi(N)}\equiv 1\mod N$
@@ -69,4 +71,4 @@ So computing $a^x\mod N$ is polynomial in $\log (N)$ by reducing $a\mod N$ and $
Corollary: Fermat's little theorem:
$1\leq a\leq p-1,a^{p-1}\equiv 1 \mod p$
$1\leq a\leq p-1,a^{p-1}\equiv 1 \mod p$