This commit is contained in:
Zheyuan Wu
2025-07-13 16:57:03 -05:00
parent d8e5e34e28
commit d82857764b
11 changed files with 186 additions and 26 deletions

View File

@@ -1,4 +1,4 @@
# Math 401, Topic 6: Postulates of quantum theory and measurement operations
# Math401 Topic 6: Postulates of quantum theory and measurement operations
## Section 1: Postulates of quantum theory
@@ -118,6 +118,42 @@ If $\rho$ is a density operator on $\mathscr{H}$ given by: $\sum_{i=1}^l |w_i\ra
### Density operator of subsystems
#### Partial trace for density operators
Let $\rho$ be a density operator in $\mathscr{H}_1\otimes\mathscr{H}_2$, the partial trace of $\rho$ over $\mathscr{H}_2$ is the density operator in $\mathscr{H}_1$ (reduced density operator for the subsystem $\mathscr{H}_1$) given by:
$$
\rho_1\coloneqq\operatorname{Tr}_2(\rho)=\sum_{k=1}^r \lambda_k^2|v_k\rangle\langle v_k|
$$
<details>
<summary>Examples</summary>
Let $\rho=\frac{1}{\sqrt{2}}(|01\rangle+|10\rangle)$ be a density operator on $\mathscr{H}=\mathbb{C}^2\otimes \mathbb{C}^2$.
Expand the expression of $\rho$ in the basis of $\mathbb{C}^2\otimes\mathbb{C}^2$ using linear combination of basis vectors:
$$
\rho=\frac{1}{2}(|01\rangle\langle 01|+|01\rangle\langle 10|+|10\rangle\langle 01|+|10\rangle\langle 10|)
$$
Note $\operatorname{Tr}_2(|ab\rangle\langle cd|)=|a\rangle\langle c|\cdot \langle b|d\rangle$.
Then the reduced density operator of the subsystem $\mathbb{C}^2$ in first qubit is, note the $\langle 0|0\rangle=\langle 1|1\rangle=1$ and $\langle 0|1\rangle=\langle 1|0\rangle=0$:
$$
\begin{aligned}
\rho_1&=\operatorname{Tr}_2(\rho)\\
&=\frac{1}{2}(\langle 1|1\rangle |0\rangle\langle 0|+\langle 0|1\rangle |0\rangle\langle 1|+\langle 1|0\rangle |1\rangle\langle 0|+\langle 0|0\rangle |1\rangle\langle 1|)\\
&=\frac{1}{2}(|0\rangle\langle 0|+|1\rangle\langle 1|)\\
&=\frac{1}{2}I
\end{aligned}
$$
is a mixed state.
</details>
#### Schmidt Decomposition theorem
Let $|u\rangle\in \mathscr{H}_1\otimes\mathscr{H}_2$ be a unit vector (pure state), then there exists orthonormal bases $|v_i\rangle$ of $\mathscr{H}_1$ and $|w_j\rangle$ of $\mathscr{H}_2$ and $\{\lambda_k\},k\leq r$, where $r$ is the Schmidt rank of $|u\rangle$, such that: