change var
This commit is contained in:
@@ -49,12 +49,26 @@ A state $|\psi\rangle$ is entangled if it cannot be expressed as a product state
|
||||
Example: the Bell state $|\psi^+\rangle=\frac{1}{\sqrt{2}}(|00\rangle+|11\rangle)$ is entangled.
|
||||
|
||||
Assume it can be written as $|\psi\rangle=|\psi_1\rangle\otimes|\psi_2\rangle$ where $|\psi_1\rangle=a|0\rangle+b|1\rangle$ and $|\psi_2\rangle=c|0\rangle+d|1\rangle$. Then:
|
||||
$$|\psi\rangle=a|00\rangle+b|01\rangle+c|10\rangle+d|11\rangle$$
|
||||
|
||||
$$
|
||||
|\psi\rangle=a|00\rangle+b|01\rangle+c|10\rangle+d|11\rangle
|
||||
$$
|
||||
|
||||
Setting this equal to $|\psi^+\rangle=\frac{1}{\sqrt{2}}(|00\rangle+|11\rangle)$ gives:
|
||||
$$ac|00\rangle+ad|01\rangle+bc|10\rangle+bd|11\rangle=\frac{1}{\sqrt{2}}(|00\rangle+|11\rangle)$$
|
||||
|
||||
$$
|
||||
ac|00\rangle+ad|01\rangle+bc|10\rangle+bd|11\rangle=\frac{1}{\sqrt{2}}(|00\rangle+|11\rangle)
|
||||
$$
|
||||
|
||||
This requires:
|
||||
$$ac=bd=\frac{1}{2}$$
|
||||
$$ad=bc=0$$
|
||||
|
||||
$$
|
||||
ac=bd=\frac{1}{2}
|
||||
$$
|
||||
|
||||
$$
|
||||
ad=bc=0
|
||||
$$
|
||||
|
||||
This is a contradiction, so $|\psi^+\rangle$ is entangled.
|
||||
|
||||
|
||||
Reference in New Issue
Block a user