From de9950a9dc274da08888d79eb2bc3c7d771e67be Mon Sep 17 00:00:00 2001 From: Zheyuan Wu <60459821+Trance-0@users.noreply.github.com> Date: Thu, 10 Apr 2025 13:05:15 -0500 Subject: [PATCH] update --- pages/Math4121/Math4121_L31.md | 92 +++++++++++++++++++++++++++++ pages/Math4121/Math4121_L32.md | 99 ++++++++++++++++++++++++++++++++ pages/Swap/Math401/Math401_N3.md | 59 ++++++++++--------- 3 files changed, 222 insertions(+), 28 deletions(-) diff --git a/pages/Math4121/Math4121_L31.md b/pages/Math4121/Math4121_L31.md index e69de29..4774c1d 100644 --- a/pages/Math4121/Math4121_L31.md +++ b/pages/Math4121/Math4121_L31.md @@ -0,0 +1,92 @@ +# Math4121 Lecture 31 + +## Chapter 3: Lebesgue Integration + +### Non-measurable sets + +#### Definition: Vitali's construction + +Step 1. Define an equivalence relation on $\mathbb{R}$ as follows: + +Recall a relation is an equivalence relation if it is reflexive, symmetric, and transitive. + +1. Reflexive: $x\sim x$ for all $x\in\mathbb{R}$ +2. Symmetric: $x\sim y$ implies $y\sim x$ for all $x,y\in\mathbb{R}$ +3. Transitive: $x\sim y$ and $y\sim z$ implies $x\sim z$ for all $x,y,z\in\mathbb{R}$ + +Say $x\sim y$ if $x-y\in\mathbb{Q}$. + +This is an equivalence relation, easy to show by the properties above. + +We denote the equivalence class of $x$ by $\mathbb{R}/\sim$, where $[x]=\{x+q:q\in\mathbb{Q}\}$. + +If $z\in [x]$, then so is the fractional part of $z$, i.e. $z-\lfloor z\rfloor\in [x]$. So in every equivalence class $[x]$ we can find an element in $[x]\cap (0,1)$. Take one such real number from every equivalence class, and call the set of all such numbers $\mathcal{N}$. + +Step 2. Show that $\mathcal{N}$ is not Lebesgue measurable. + +We defined the translation of $S$ as follows: + +Given a set $S\subseteq\mathbb{R}$ and a real number $a\in\mathbb{R}$, the translation of $S$ by $a$ is defined as + +$$ +S+a=\{x+a:x\in S\} +$$ + +Outer measure is translation invariant, i.e. $m_e(S+a)=m_e(S)$ for all $S\subseteq\mathbb{R}$ and $a\in\mathbb{R}$, which also holds for inner measure. + +Properties of $\mathcal{N}$: + +1. $(0,1)\subseteq\bigcup_{q\in \mathbb{Q}\cap (-1,1)} (\mathcal{N}+q)\subseteq (-1,2)$ +2. $\{\mathcal{N}+q:q\in\mathbb{Q}\cap (-1,1)\}$ is pairwise disjoint. + +Suppose $\mathcal{N}$ is measurable. Then by (1) +$$ +\begin{aligned} + 1&\leq \sum_{q\in\mathbb{Q}\cap (-1,1)} (\mathcal{N}+q)\\ + &=\sum_{q\in\mathbb{Q}\cap (-1,1)} m(\mathcal{N}) +\end{aligned} +$$ +So $m(\mathcal{N})\neq 0$. + +By (2), we have + +$$ +\begin{aligned} +3&\geq \sum_{q\in\mathbb{Q}\cap (-1,1)} m(\mathcal{N}+q)\\ +&=\sum_{q\in\mathbb{Q}\cap (-1,1)} m(\mathcal{N})\\ +&=m(\mathcal{N})\sum_{q\in\mathbb{Q}\cap (-1,1)} 1\\ +&=\infty +\end{aligned} +$$ + +This is a contradiction. So $\mathcal{N}$ is not Lebesgue measurable. + +QED + +Appendix: + +(1) $I\subseteq\bigcup_{q\in\mathbb{Q}\cap (-1,1)} (\mathcal{N}+q)$ + +Let $x\in I$. We need to find $q\in\mathbb{Q}\cap (-1,1)$ such that $x-q\in\mathcal{N}$. $\exists y\in\mathcal{N}$ such that $y\in (0,1)\cap [x]$. Then $x-y=q\in \mathbb{Q}$ and since $x,y\in I$, we have $q\in (-1,1)$. + +(2) $\{\mathcal{N}+q:q\in\mathbb{Q}\cap (-1,1)\}$ is pairwise disjoint. + +Suppose $\mathcal{N}+q_1=\mathcal{N}+q_2$ for some $q_1,q_2\in\mathbb{Q}\cap (-1,1)$. We want to show $q_1=q_2$. + +Take $x$ in the intersection, then this means $y=x-q_1, z=x-q_2\in\mathcal{N}$. + +But $y\sim z$, this contradicts the fact that $\mathcal{N}$ contains only one element from each equivalence class. So $q_1=q_2$. + +#### Axiom of choice + +Given a set $S$, $\exists \psi:\mathscr{P}(S)\to S$ such that $\psi(T)\in T, \forall T\subseteq\mathscr{P}(S)$. + +For any set $S$, there exists a map that maps every non-empty subset of $S$ to an element of that subset. + +This leads to some weird results, e.g. Banach-Tarski paradox. + +_Godel showed that the axiom of choice is not contradictory to ZF set theory._ You have ZFC + +_Cohen showed that the negation of the axiom of choice is not contradictory to ZF set theory._ You have ZF + +You can choose the axiom or not. diff --git a/pages/Math4121/Math4121_L32.md b/pages/Math4121/Math4121_L32.md index e69de29..bc3db06 100644 --- a/pages/Math4121/Math4121_L32.md +++ b/pages/Math4121/Math4121_L32.md @@ -0,0 +1,99 @@ +# Math4121 Lecture 32 + +## Chapter 6: The Lebesgue Integral + +### Measurable Functions + +Definition: A function $f:\mathbb{R}\to\mathbb{R}$ is measurable on the interval $[a,b]$ if $\{x\in [a,b]:f(x) > c\}$ is measurable for all $c\in\mathbb{R}$, called the **super level set** of $f$. + +Denote $\{f> c\}$ + +#### Proposition 6.1 + +The following are equivalent: + +For all $c\in\mathbb{R}$, + +1. $\{x\in [a,b]:f(x) > c\}$ is measurable. +2. $\{x\in [a,b]:f(x) < c\}$ is measurable. +3. $\{x\in [a,b]:f(x) \geq c\}$ is measurable. +4. $\{x\in [a,b]:f(x) \leq c\}$ is measurable. +5. $\{x\in \mathbb{R}:c \leq f(x) < d\}$ is measurable for all $c,d\in\mathbb{R}$. + +Proof: + +Since the complement of a measurable set is measurable. (1) $\iff$ (4). and (2) $\iff$ (3). + +We only need to show (1) $\implies$ (2). + +Since $\{f>c\}=\bigcup_{n=1}^{\infty}\{f\geq c+\frac{1}{n}\}$. + +So (1) $\implies$ (2). + +Since (2) $\implies$ (1)-(4) $\implies$ (5). + +To see (5) $\implies$ (1), we have $\{f\geq c\}=\bigcup_{n=1}^{\infty}\{x\in\mathbb{R}:c \leq f(x) < c+n\}$ + +QED + +#### Proposition 6.3 + +Let $f,g$ be measurable on $[a,b]$ and $\alpha\in\mathbb{R}$. Then the following are measurable: + +1. $f+g$ +2. $fg$ +3. $\alpha f$ +4. $|f|^\alpha$ + +Proof: + +If $\alpha=0$, then $\alpha f$ and $|f|^\alpha$ are constant functions, hence measurable. + +But for constant functions $h$, $\{h>c\}=\begin{cases} +\emptyset & \text{if } c\geq h \\ +\mathbb{R} & \text{if } c < h +\end{cases}$ + +For $a\neq 0$, $\{x\in \mathbb{R}:\alpha f(x) > c\}=\{x\in \mathbb{R}:f(x) > \frac{c}{\alpha}\}$ + +Similarly, $\{x\in \mathbb{R}:|f(x)|^\alpha > c\}=\{x\in \mathbb{R}:|f(x)| > c^{1/\alpha}\}=\{x\in \mathbb{R}:f(x) > c^{1/\alpha}\}\cup\{x\in \mathbb{R}:f(x) < -c^{1/\alpha}\}$ + +We want to show $\{f+g>c\}=\bigcup_{q\in \mathbb{Q}}\{f>q\}\cap\{g>c-q\}$ + +$\{f+g>c\}\supseteq \bigcup_{q\in \mathbb{Q}}\{f>q\}\cap\{g>c-q\}$ + +if $x$ is in the RHS, then $\exists q\in \mathbb{Q}$ such that $f(x) > q$ and $g(x) > c-q$, therefore $f(x)+g(x) > c$. + +So $x$ is in the LHS. + +$\{f+g>c\}\subseteq \bigcup_{q\in \mathbb{Q}}\{f>q\}\cap\{g>c-q\}$ + +Let $x\in \mathbb{R}$ such that $f(x)+g(x) > c$. Need to find $q\in \mathbb{Q}$ such that $f(x) > q$ and $g(x) > c-q$. + +Since $f(x)>c-g(x)$, by the density of $\mathbb{Q}$ in $\mathbb{R}$, $\exists q\in \mathbb{Q}$ such that $q > c-g(x)$. + +For $fg$, we have $fg=\frac{1}{4}((f+g)^2-(f-g)^2)$ + +So $fg$ is measurable. + +QED + +### Limit of Measurable Functions + +#### Proposition 6.4 + +Let $\{f_n\}$ be a sequence of measurable functions on $[a,b]$. Then, + +$$ +g(x)=\sup_{n\geq 1}f_n(x),\inf_{n\geq 1}f_n(x),\limsup_{n\to\infty}f_n(x),\liminf_{n\to\infty}f_n(x) +$$ + +are all measurable functions + +#### Corollary of Proposition 6.4 + +If $\{f_n\}_{n=1}^{\infty}$ are measurable functions and $f(x)=\lim_{n\to\infty}f_n(x)$ exists for all $x\in[a,b]$, then $f$ is measurable. (pointwise limit of measurable functions is measurable) + +#### Definition of almost everywhere + +A property holds **almost everywhere** if it holds everywhere except for a set of measure zero. diff --git a/pages/Swap/Math401/Math401_N3.md b/pages/Swap/Math401/Math401_N3.md index 396faa1..9da26ea 100644 --- a/pages/Swap/Math401/Math401_N3.md +++ b/pages/Swap/Math401/Math401_N3.md @@ -126,6 +126,8 @@ def is_uniquely_decipherable(f): return True ``` +### Shannon's source coding theorem + #### Definition 1.1.4 An elementary information source is a pair $(A,\mu)$ where $A$ is an alphabet and $\mu$ is a probability distribution on $A$. $\mu$ is a function $\mu:A\to[0,1]$ such that $\sum_{a\in A}\mu(a)=1$. @@ -142,6 +144,35 @@ $$ L(\mu)=\min\{\overline{l}(\mu,f)|f:A\to S(B)\text{ is uniquely decipherable}\} $$ + +#### Lemma: Jenson's inequality + +Let $f$ be a convex function on the interval $(a,b)$. Then for any $x_1,x_2,\cdots,x_n\in (a,b)$ and $\lambda_1,\lambda_2,\cdots,\lambda_n\in [0,1]$ such that $\sum_{i=1}^{n}\lambda_i=1$, we have + +$$f(\sum_{i=1}^{n}\lambda_ix_i)\leq \sum_{i=1}^{n}\lambda_if(x_i)$$ + +Proof: + +If $f$ is a convex function, there are three properties that useful for the proof: + +1. $f''(x)\geq 0$ for all $x\in (a,b)$ +2. For any $x,y\in (a,b)$, $f(x)\geq f(y)+(x-y)f'(y)$ (Take tangent line at $y$) +3. For any $x,y\in (a,b)$ and $0<\lambda<1$, we have $f(\lambda x+(1-\lambda)y)\leq \lambda f(x)+(1-\lambda)f(y)$ (Take line connecting $f(x)$ and $f(y)$) + +We use $f(x)\geq f(y)+(x-y)f'(y)$, we replace $y=\sum_{i=1}^{n}\lambda_ix_i$ and $x=x_j$, we have + +$$f(x_j)\geq f(\sum_{i=1}^{n}\lambda_ix_i)+(x_j-\sum_{i=1}^{n}\lambda_ix_i)f'(\sum_{i=1}^{n}\lambda_ix_i)$$ + +We sum all the inequalities, we have + +$$ +\begin{aligned} +\sum_{j=1}^{n}\lambda_j f(x_j)&\geq \sum_{j=1}^{n}\lambda_jf(\sum_{i=1}^{n}\lambda_ix_i)+\sum_{j=1}^{n}\lambda_j(x_j-\sum_{i=1}^{n}\lambda_ix_i)f'(\sum_{i=1}^{n}\lambda_ix_i)\\ +&\geq \sum_{j=1}^{n}\lambda_jf(\sum_{i=1}^{n}\lambda_ix_i)+0\\ +&=f(\sum_{j=1}^{n}\lambda_ix_j) +\end{aligned} +$$ + #### Theorem 1.1.5 Shannon's source coding theorem @@ -204,34 +235,6 @@ $$ $\log \prod_{a\in A}\left(\frac{v(a)}{\mu(a)}\right)^{\mu(a)}=\sum_{a\in A}\mu(a)\log \frac{v(a)}{\mu(a)}$ is also called Kullback–Leibler divergence or relative entropy. -> Jenson's inequality: Let $f$ be a convex function on the interval $(a,b)$. Then for any $x_1,x_2,\cdots,x_n\in (a,b)$ and $\lambda_1,\lambda_2,\cdots,\lambda_n\in [0,1]$ such that $\sum_{i=1}^{n}\lambda_i=1$, we have -> -> $$f(\sum_{i=1}^{n}\lambda_ix_i)\leq \sum_{i=1}^{n}\lambda_if(x_i)$$ -> -> Proof: -> -> If $f$ is a convex function, there are three properties that useful for the proof: -> -> 1. $f''(x)\geq 0$ for all $x\in (a,b)$ -> 2. For any $x,y\in (a,b)$, $f(x)\geq f(y)+(x-y)f'(y)$ (Take tangent line at $y$) -> 3. For any $x,y\in (a,b)$ and $0<\lambda<1$, we have $f(\lambda x+(1-\lambda)y)\leq \lambda f(x)+(1-\lambda)f(y)$ (Take line connecting $f(x)$ and $f(y)$) -> -> We use $f(x)\geq f(y)+(x-y)f'(y)$, we replace $y=\sum_{i=1}^{n}\lambda_ix_i$ and $x=x_j$, we have -> -> $$f(x_j)\geq f(\sum_{i=1}^{n}\lambda_ix_i)+(x_j-\sum_{i=1}^{n}\lambda_ix_i)f'(\sum_{i=1}^{n}\lambda_ix_i)$$ -> -> We sum all the inequalities, we have -> -> $$ -\begin{aligned} -\sum_{j=1}^{n}\lambda_j f(x_j)&\geq \sum_{j=1}^{n}\lambda_jf(\sum_{i=1}^{n}\lambda_ix_i)+\sum_{j=1}^{n}\lambda_j(x_j-\sum_{i=1}^{n}\lambda_ix_i)f'(\sum_{i=1}^{n}\lambda_ix_i)\\ -&\geq \sum_{j=1}^{n}\lambda_jf(\sum_{i=1}^{n}\lambda_ix_i)+0\\ -&=f(\sum_{j=1}^{n}\lambda_ix_j) -\end{aligned} -$$ - - - Since $\log$ is a concave function, by Jensen's inequality $f(\sum_{i=1}^{n}\lambda_ix_i)\leq \sum_{i=1}^{n}\lambda_if(x_i)$, we have $$