From e105e717be2d6fd86669401d97f53361be63bbd6 Mon Sep 17 00:00:00 2001 From: Zheyuan Wu <60459821+Trance-0@users.noreply.github.com> Date: Tue, 4 Feb 2025 22:01:50 -0600 Subject: [PATCH] Update Math416_L4.md --- pages/Math416/Math416_L4.md | 4 +--- 1 file changed, 1 insertion(+), 3 deletions(-) diff --git a/pages/Math416/Math416_L4.md b/pages/Math416/Math416_L4.md index 0da316b..f6c3f67 100644 --- a/pages/Math416/Math416_L4.md +++ b/pages/Math416/Math416_L4.md @@ -59,9 +59,7 @@ $$ > A function $g(h)$ is $o(h)$ if $\lim_{h\to 0}\frac{g(h)}{h}=0$. > > -> $f$ is differentiable if and only if $f(z+h)=f(z)+f'(z)h+\frac{1}{2}h^2f''(z)+o(h^3)$ as $h\to 0$. - - +> $f$ is differentiable if and only if $f(z+h)=f(z)+f'(z)h+\frac{1}{2}h^2f''(z)+o(h^3)$ as $h\to 0$. Since $f$ is holomorphic at $\gamma(t_0)=\zeta_0$, we have