diff --git a/content/Math4201/Math4201_L20.md b/content/Math4201/Math4201_L20.md new file mode 100644 index 0000000..c6607bd --- /dev/null +++ b/content/Math4201/Math4201_L20.md @@ -0,0 +1,121 @@ +# Math4201 Topology I (Lecture 20) + +## Quotient topology + +### More propositions + +#### Proposition for quotient maps in restrictions + +Let $X,Y$ be topological spaces and $p:X\to Y$ is surjective and open/closed. Let $A\subseteq X$ be saturated by $p$, ($p^{-1}(p(A))=A$). + +Then $q: A\to p(A)$ given by the restriction of $p$ is open/closed surjective map (In particular, it's a quotient map). + +
+Proof + +$q$ is surjective and continuous. Now assume $p$ is open and we will show that $q$ is also open. Any open subspace of $A$ is given as $U\cap A$ where $U$ is open in $X$. By definition, $q(U\cap A)=p(U\cap A)=p(U)\cap p(A)$ + +To see the second identity: + +1. $p(U\cap A)\subseteq p(U)\cap p(A)$ + +$\forall y\in p(U\cap A)$, $y=p(x)$ with $x\in U\cap A$, since $x\in A$ and $x\in U$, $y=p(x)\in p(U)\cap p(A)$ + +2. $p(U)\cap p(A)\subseteq p(U\cap A)$ + +$\forall y\in p(U)\cap p(A)$, $y=p(x_1)$ with $x_1\in U$ and $y=p(x_2)$ with $x_2\in A$, since $x_1\in U$ and $x_2\in A$, $y=p(x_1)=p(x_2)\in p(U\cap A)$ + +So $x_1=x_2\in U\cap A$, $y=p(x_1)=p(x_2)\in p(U)\cap p(A)$, $y\in p(U\cap A)$. + +Note that $p(U)\subseteq X$ is open by $p$ is an open map. + +So $p(U)\cap p(A)$ is open in $p(A)$. + +$q(U\cap A)=p(U\cap A)=p(U)\cap p(A)$ is open. + +So $q$ is open in $p(A)$. + +
+ +### Simplicial complexes (extra chapter) + +#### Definition for simplicial complexes + +Simplicial complexes are topological space with simplices ($n$ dimensional triangles) as their building blocks. + +#### Definition for n dimensional simplex + +Let $v_0,\dots,v_n$ be points in $\mathbb{R}^m$ such that $v_n-v_0$, $v_{n-1}-v_0$, $\cdots$, and $v_1-v_0$ are linearly independent in $\mathbb{R}^m$. (in particular $n\leq m$). + +The $n$-dimensional simplex determined by $\{v_0,\dots,v_n\}$ is given as: + +$$ +\Delta^n\coloneqq [v_0,\dots,v_n]=\{t_0v_0+t_1v_1+\cdots+t_nv_n\vert t_i\geq 0, \sum_{i=0}^n t_i=1\} +$$ + +The coefficients $t_0,\dots,t_n$ are called barycentric coordinates. + +
+Example of simplicial complex + +$n=0$, + +$\Delta^0=\{v_0\}$ + +$n=1$, + +$\Delta^1=\{t_0v_0+t_1v_1\vert t_0+t_1=1\}$, this is the line segment between $v_0$ and $v_1$. + +$n=2$, + +$\Delta^2=\{t_0v_0+t_1v_1+t_2v_2\vert t_0+t_1+t_2=1\}$, this is the triangle with vertices $v_0,v_1,v_2$. + +
+ +> [!NOTE] +> +> Every non-empty subset $\{v_{i_0},\dots,v_{i_k}\}$ of $\{v_0,\dots,v_n\}$ determines a $k$ dimensional simplex $[v_{i_0},\dots,v_{i_k}]\subseteq \Delta^n=[v_0,\dots,v_n]$. Inside the $n$ dimensional simplex $t_{i_0}v_{i_0}+\cdots+t_{i_n}v_{i_k}\in \Delta^n$. Where the coefficient $t_j$ of $v_j\notin \{v_{i_0},\dots,v_{i_n}\}$ is $0$. + +Any such $k$ dimensional simplex is called a face of the simplex $[v_{i_0},\dots,v_{i_n}]$. + +
+Example of faces for simplicial complex\ + +For a triangle $[v_0,v_1,v_2]$, the faces are $[v_0,v_1]$, $[v_0,v_2]$, and $[v_1,v_2]$ (the edges of the triangle). + +
+ +#### Definition for abstract simplicial complex + +Let $V$ be a finite or countable set, an abstract simplicial complex on $V$ is a collection of **finite non-empty subset** of $V$, denoted by $K$. And the two conditions are satisfied: + +1. If $\sigma\in K$ and $\tau\subseteq \sigma$, then $\tau\in K$. + +2. For any $v\in V$, $\{v\}\in K$. + +
+Example of abstract simplicial complex + +Let $V=\{a,b,c,d\}$. + +If we want to include $\{a,b,c\}$, then we need to include $\{a,b\}$ and $\{b,c\}$, so we have $K=\{\{a,b,c\},\{a,b\},\{b,c\},\{a\},\{b\},\{c\},\{d\}\}$ is an abstract simplicial complex. + +
+ +#### Topological realization of abstract simplicial complex + +Let $\bigsqcup_{\sigma\in K}\Delta^{|\sigma|-1}$ be the disjoint union of all $|\sigma|-1$ dimensional simplices in $K$. + +$$ +\tilde{X_k}=\bigsqcup_{\sigma\in K}\Delta^{|\sigma|-1} +$$ + +We use subspace topology to define a topology on $\Delta^n$ and the union of such topology for each $\Delta^{|\sigma|-1}$ defines a topology on $\tilde{X_k}$. + +We define the equivalence relation $x\in \Delta_{\sigma}^{|\sigma|-1}\sim x'\in \Delta_{\sigma'}^{|\sigma'|-1}$ if $x\in \Delta_{\sigma'\cap \sigma}^{|\sigma'\cap \sigma|-1}\subseteq \Delta_{\sigma}^{|\sigma|-1}$. and $x'\in \Delta_{\sigma'\cap \sigma}^{|\sigma'\cap \sigma|-1}\subseteq \Delta_{\sigma'}^{|\sigma'|-1}$. + +are the sample points of $\Delta_{\sigma\cap \sigma'}^{|\sigma\cap \sigma'|-1}$. + +$X_K$ is the quotient space of $\tilde{X_k}$ by the equivalence relation. + +Continue next time. \ No newline at end of file diff --git a/content/Math4201/_meta.js b/content/Math4201/_meta.js index e87a945..4624b9b 100644 --- a/content/Math4201/_meta.js +++ b/content/Math4201/_meta.js @@ -23,4 +23,5 @@ export default { Math4201_L17: "Topology I (Lecture 17)", Math4201_L18: "Topology I (Lecture 18)", Math4201_L19: "Topology I (Lecture 19)", + Math4201_L20: "Topology I (Lecture 20)", }