updates
This commit is contained in:
142
content/Math4201/Math4201_L8.md
Normal file
142
content/Math4201/Math4201_L8.md
Normal file
@@ -0,0 +1,142 @@
|
|||||||
|
# Math4201 Lecture 8
|
||||||
|
|
||||||
|
Recall from real analysis, a set is closed if and only if it has limit points.
|
||||||
|
|
||||||
|
## New materials
|
||||||
|
|
||||||
|
### Limit points
|
||||||
|
|
||||||
|
Let $(X,\mathcal{T})$ be a topological space. $A$ is a subset of $X$, then we say $x\in X$ is a limit point of $A$ if any open set $U\subset X$ containing $x$ has another point $y\in A-\{x\}$.
|
||||||
|
|
||||||
|
<details>
|
||||||
|
<summary>Example of limit points</summary>
|
||||||
|
|
||||||
|
Let $X=\mathbb{R}$ with standard topology.
|
||||||
|
|
||||||
|
Let $A=(0,1)$, then set of limit points of $A$ is $[0,1]$.
|
||||||
|
|
||||||
|
Let $A=\left{\frac{1}{n}\right}_{n\in \mathbb{N}}$, then set of limit points of $A$ is $\{0\}$.
|
||||||
|
|
||||||
|
Let $A=\{0\}\cup (1,2)$, then set of limit points of $A$ is $[1,2]$
|
||||||
|
|
||||||
|
Let $A=\mathbb{Z}$, then set of limit points of $A$ is $\emptyset$.
|
||||||
|
|
||||||
|
</details>
|
||||||
|
|
||||||
|
#### Proposition of limit points and closed sets
|
||||||
|
|
||||||
|
A set is close if and only if it has limit points.
|
||||||
|
|
||||||
|
Theorem: For any subset $A$ of a topological space $X$, the closure of $A$ is $\overline{A}=A\cup A'$.
|
||||||
|
|
||||||
|
<details>
|
||||||
|
<summary>Proof</summary>
|
||||||
|
|
||||||
|
First we want to prove the theorem implies the proposition,
|
||||||
|
|
||||||
|
$\Rightarrow$
|
||||||
|
|
||||||
|
Let $A$ be a close set in $X$, then $\overline{A}=A$ because $A$ in the intersection of all closed subsets $Z\subseteq A$ in $X$ that contains $A$.
|
||||||
|
|
||||||
|
So $Z=A$ is such a closed subset of $X$ that contains $A$.
|
||||||
|
|
||||||
|
By the theorem, $\overline{A}=A\cup A'$. Combining this with the fact that $A$ is closed, we have $A=A\cup A'$.
|
||||||
|
|
||||||
|
So $A'\subseteq A$.
|
||||||
|
|
||||||
|
$\Leftarrow$
|
||||||
|
|
||||||
|
Suppose $A\subseteq X$ is a set that includes all its limit points, then $A'\subseteq A$.Then $A'\cup A=A$.
|
||||||
|
|
||||||
|
By the theorem, $\overline{A}=A\cup A'=A$.
|
||||||
|
|
||||||
|
Since $\overline{A}$ is the smallest closed subset of $X$ that contains $A$, we have $A$ is closed.
|
||||||
|
|
||||||
|
</details>
|
||||||
|
|
||||||
|
#### Definition of neighborhood
|
||||||
|
|
||||||
|
Let $(X,\mathcal{T})$ be a topological space. A neighborhood of a point $x\in X$ is an open set $U\in \mathcal{T}$ such that $x\in U$.
|
||||||
|
|
||||||
|
#### Lemma of intersection of neighborhoods for closure of a set
|
||||||
|
|
||||||
|
$x\in \overline{A}$ if and only if any neighborhood of $U$ of $x$ non-trivial intersects $A$. ($A\cap U\neq \emptyset$)
|
||||||
|
|
||||||
|
<details>
|
||||||
|
<summary>Proof of Lemma</summary>
|
||||||
|
|
||||||
|
$\Leftarrow$
|
||||||
|
|
||||||
|
We proceed by contradiction.
|
||||||
|
|
||||||
|
Suppose $A\notin \overline{A}$, then $x\notin \overline{A}$.
|
||||||
|
|
||||||
|
Then $\overline{A}=\bigcap_{A\subseteq Z, Z\text{ is closed}} Z$
|
||||||
|
|
||||||
|
So, there is $A\subseteq Z\subset X$ and $Z$ is closed.
|
||||||
|
|
||||||
|
So this implies that $x\in X-Z\coloneq U$ and $U$ is open since it a complement of a closed set $Z$.
|
||||||
|
|
||||||
|
Since $A\subseteq Z$, we have $A\cap U= \emptyset$. (disjoint)
|
||||||
|
|
||||||
|
So $U$ and $A$ are disjoint. So $U$ is an open neighborhood of $x$ that is disjoint from $A$.
|
||||||
|
|
||||||
|
This contradicts the assumption that $x\in \overline{A}$.
|
||||||
|
|
||||||
|
$\Rightarrow$
|
||||||
|
|
||||||
|
Let $x\in \overline{A}$, and we want to show that any neighborhood of $U$ of $x$ non-trivial intersects $A$. ($A\cap U\neq \emptyset$)
|
||||||
|
|
||||||
|
By contradiction, suppose that there is an open neighborhood of $x$ that is disjoint from $A$. Then $Z\coloneq X-U$ is closed and $A\subseteq Z$ because $U\cap A= \emptyset$.
|
||||||
|
|
||||||
|
Also $x\notin Z$.
|
||||||
|
|
||||||
|
By the definition of closure, $\overline{A}=\subset Z$.
|
||||||
|
|
||||||
|
Since $x\notin Z$, we have $x\notin \overline{A}$.
|
||||||
|
|
||||||
|
This contradicts the assumption that $x\in \overline{A}$.
|
||||||
|
|
||||||
|
</details>
|
||||||
|
|
||||||
|
#### Proof of theorem
|
||||||
|
|
||||||
|
For any subset $A$ of a topological space $X$, the closure of $A$ is $\overline{A}=A\cup A'$.
|
||||||
|
|
||||||
|
<details>
|
||||||
|
<summary>Proof</summary>
|
||||||
|
|
||||||
|
First we show $A\subseteq \overline{A}$.
|
||||||
|
|
||||||
|
If $x\in A'$, then any open neighborhood $U$ of $x$ has a non-trivial intersection with $A$ by the lemma.
|
||||||
|
|
||||||
|
So $x\in \overline{A}$.
|
||||||
|
|
||||||
|
We already know $A\subseteq \overline{A}$.
|
||||||
|
|
||||||
|
Therese two inductions implies $A\cup A'\subseteq \overline{A}$.
|
||||||
|
|
||||||
|
Next we show that $\overline{A}\subseteq A\cup A'$.
|
||||||
|
|
||||||
|
If $x\in \overline{A}$, then by the lemma, any open neighborhood $U$ of $x$ has a non-trivial intersection with $A$.
|
||||||
|
|
||||||
|
If $x\in A$, then $x\in A\cup A'$.
|
||||||
|
|
||||||
|
If $x\notin A$, then the intersection of any open neighborhood $U$ of $x$ with $A$ does not contain $x$.
|
||||||
|
|
||||||
|
This implies that this intersection has to include a point $y$ that is not $x$.
|
||||||
|
|
||||||
|
Since this holds for any open neighborhood $U$ of $x$, we have $x\in A'$. ($x$ is a limit point of $A$)
|
||||||
|
|
||||||
|
So $x\in A'$.
|
||||||
|
|
||||||
|
Therese two inductions implies $\overline{A}\subseteq A\cup A'$.
|
||||||
|
|
||||||
|
</details>
|
||||||
|
|
||||||
|
> [!TIP]
|
||||||
|
>
|
||||||
|
> Now the three definition of closure are equivalent.
|
||||||
|
>
|
||||||
|
> 1. The smallest closed subset of $X$ that contains $A$.
|
||||||
|
> 2. $A\cup A'$.
|
||||||
@@ -8,5 +8,7 @@ export default {
|
|||||||
Math4201_L3: "Topology I (Lecture 3)",
|
Math4201_L3: "Topology I (Lecture 3)",
|
||||||
Math4201_L4: "Topology I (Lecture 4)",
|
Math4201_L4: "Topology I (Lecture 4)",
|
||||||
Math4201_L5: "Topology I (Lecture 5) Bonus",
|
Math4201_L5: "Topology I (Lecture 5) Bonus",
|
||||||
Math4201_L6: "Topology I (Lecture 6)"
|
Math4201_L6: "Topology I (Lecture 6)",
|
||||||
|
Math4201_L7: "Topology I (Lecture 7)",
|
||||||
|
Math4201_L8: "Topology I (Lecture 8)",
|
||||||
}
|
}
|
||||||
|
|||||||
Reference in New Issue
Block a user