deployment update
This commit is contained in:
@@ -15,12 +15,20 @@ A binary operation (usually denoted by $*$) on a set $X$ is a function from $X\t
|
||||
|
||||
$+$ is a binary operation on $\mathbb{Z}$ or $\mathbb{R}$.
|
||||
|
||||
---
|
||||
|
||||
$\cdot$ is a binary operation on $\mathbb{Z}$ or $\mathbb{R}$.
|
||||
|
||||
division is not a binary operation on $\mathbb{Z}$ or $\mathbb{R}$.
|
||||
---
|
||||
|
||||
division is not a binary operation on $\mathbb{Z}$ or $\mathbb{R}$. (Consider 0)
|
||||
|
||||
---
|
||||
|
||||
Generally, we can define a binary operation over sets whatever we want.
|
||||
|
||||
---
|
||||
|
||||
Let $X=\{a,b,c\}$ and we can define the table for binary operation as follows:
|
||||
|
||||
|*| a | b | c |
|
||||
@@ -29,6 +37,8 @@ Let $X=\{a,b,c\}$ and we can define the table for binary operation as follows:
|
||||
|b| b | c | c |
|
||||
|c| a | b | c |
|
||||
|
||||
---
|
||||
|
||||
If we let $X$ be the set of all functions from $\mathbb{R}$ to $\mathbb{R}$.
|
||||
|
||||
then $(f+g)(x)=f(x)+g(x)$,
|
||||
@@ -80,12 +90,42 @@ Suppose $X=\{a,b,c\}$
|
||||
|
||||
is not associative, take $a,b,c$ as examples.
|
||||
|
||||
$$
|
||||
a*(b*c)=a*c=b\neq (a*b)*c=b*c=c
|
||||
$$
|
||||
|
||||
</details>
|
||||
|
||||
#### Theorem forAssociativity of Composition
|
||||
#### Theorem for Associativity of Composition
|
||||
|
||||
(Associativity of Composition) Let S be a set and let $f,g$ and $h$ be functions from S to S. Then $(f\circ g)\circ h=f\circ(g\circ h)$.
|
||||
|
||||
> [!NOTE]
|
||||
>
|
||||
> There exists binary operation that is associative but not commutative.
|
||||
>
|
||||
> Consider $(f\circ g)$ where $f,g$ are functions over some set $X$.
|
||||
>
|
||||
> $(f\circ g)(x)=f(g(x))$ is generally not commutative but always associative.
|
||||
>
|
||||
> There exists binary operation that is commutative but not associative.
|
||||
>
|
||||
> Consider operation defined belows:
|
||||
>
|
||||
> $S=\{a,b,c\}$
|
||||
>
|
||||
> |*| a | b | c |
|
||||
> |---|---|---|---|
|
||||
> |a| a | b | b |
|
||||
> |b| b | b | c |
|
||||
> |c| b | c | c |
|
||||
>
|
||||
> Note that this operation is commutative since the table is symmetric on diagonal.
|
||||
>
|
||||
> This operation is not associative, take $a,b,c$ as examples.
|
||||
>
|
||||
> $a*(b*c)=a*c=b\neq (a*b)*c=b*c=c$
|
||||
|
||||
#### Definition of Identity element
|
||||
|
||||
An element $e\in X$ is called identity element if $a*e=e*a=a$ for all $a\in X$.
|
||||
@@ -124,7 +164,11 @@ identity function $f(x)=x$ is the identity element of $(f\circ g)(x)=f(g(x))$.
|
||||
>
|
||||
> Suppose $X=\{a,b,c\}$
|
||||
> |*| a | b | c |
|
||||
|---|---|---|---|
|
||||
|a| a | b | b |
|
||||
|b| b | c | c |
|
||||
|c| a | b | c |
|
||||
> |---|---|---|---|
|
||||
> |a| a | b | b |
|
||||
> |b| b | c | c |
|
||||
> |c| a | b | c |
|
||||
>
|
||||
> No identity element exists for this binary operation.
|
||||
|
||||
|
||||
|
||||
@@ -1,4 +1,4 @@
|
||||
# MatH4302 Modern Algebra
|
||||
# Math4302 Modern Algebra
|
||||
|
||||
Prerequisites: Math 429 or permission of instructor
|
||||
|
||||
|
||||
Reference in New Issue
Block a user