From e69362ce3c19aa6566306cdfb55b7215560f4a38 Mon Sep 17 00:00:00 2001 From: Zheyuan Wu <60459821+Trance-0@users.noreply.github.com> Date: Mon, 2 Feb 2026 13:50:03 -0600 Subject: [PATCH] Create Math4302_L9.md --- content/Math4302/Math4302_L9.md | 138 ++++++++++++++++++++++++++++++++ 1 file changed, 138 insertions(+) create mode 100644 content/Math4302/Math4302_L9.md diff --git a/content/Math4302/Math4302_L9.md b/content/Math4302/Math4302_L9.md new file mode 100644 index 0000000..241fa8e --- /dev/null +++ b/content/Math4302/Math4302_L9.md @@ -0,0 +1,138 @@ +# Math4302 Modern Algebra (Lecture 9) + +## Groups + +### Non-cyclic groups + +#### Dihedral groups + +The dihedral group $D_n$ is the group of symmetries of a regular $n$-gon. + +(Permutation that sends adjacent vertices to adjacent vertices) + +$D_n +Proof + +Consider the first half, clearly $\rho_i\neq \rho_j$ if $0\leq i + +In $D_n$, $\phi\rho=\rho^{n-1}\phi$, more generally, $\phi\rho^i=\rho^{n-i}\phi$ for any $i\in\mathbb{Z}$. + +### Group homomorphism + +#### Definition for group homomorphism + +Let $G,G'$ be groups. + +$\phi:G\to G'$ is called a group homomorphism if $\phi(g_1g_2)=\phi(g_1)\phi(g_2)$ for all $g_1,g_2\in G$ (Note that $\phi$ may not be bijective). + +This is a weaker condition than isomorphism. + +
+Example + +$GL(2,\mathbb{R})=\{A\in M_{2\times 2}(\mathbb{R})|det(A)\neq 0\}$ + +Then $\phi:GL(2,\mathbb{R})\to (\mathbb{R}-\{0\},\cdot)$ where $\phi(A)=\det(A)$ is a group homomorphism, since $\det(AB)=\det(A)\det(B)$. + +This is not one-to-one but onto, therefore not an isomorphism. + +--- + +$(\mathbb{Z}_n,+)$ and $D_n$ has homomorphism $(\mathbb{Z}_n,+)\to D_n$ where $\phi(k)=\rho^k$ + +$\phi(i+j)=\rho^{i+j\mod n}=\rho^i\rho^j=\phi(i)+\phi(j)$. + +This is not onto but one-to-one, therefore not an isomorphism. + +--- + +Let $G,G'$ be two groups, let $e$ be the identity of $G$ and let $e'$ be the identity of $G'$. + +Let $\phi:G\to G'$, $\phi(a)=e'$ for all $a\in G$. + +This is a group homomorphism, + +$$ +\phi(ab)=\phi(a)\phi(b)=e'e'=e' +$$ + +This is generally not onto and not one-to-one, therefore not an isomorphism. + +
+ +#### Corollary for group homomorphism + +Let $G,G'$ be groups and $\phi:G\to G'$ be a group homomorphism. $e$ is the identity of $G$ and $e'$ is the identity of $G'$. + +1. $\phi(e)=e'$ +2. $\phi(a^{-1})=(\phi(a))^{-1}$ for all $a\in G$ +3. If $H\leq G$, then $\phi(H)\leq G'$, where $\phi(H)=\{\phi(a)|a\in H\}$. +4. If $K\leq G'$ then $\phi^{-1}(K)\leq G$, where $\phi^{-1}(K)=\{a\in G|\phi(a)\in K\}$. + +
+Proof + +(1) $\phi(e)=e'$ + +Consider $\phi(ee)=\phi(e)\phi(e)$, therefore $\phi(e)=e'$ by cancellation on the left. + +--- + +(2) $\phi(a^{-1})=(\phi(a))^{-1}$ + +Consider $\phi(a^{-1}a)=\phi(a^{-1})\phi(a)=\phi(e)$, therefore $\phi(a^{-1})$ is the inverse of $\phi(a)$ in $G'$. + +--- + +(3) If $H\leq G$, then $\phi(H)\leq G'$, where $\phi(H)=\{\phi(a)|a\in H\}$. + +- $e\in H$ implies that $e'=\phi(e)\in\phi(H)$. +- If $x\in \phi(H)$, then $x=\phi(a)$ for some $a\in H$. So $x^{-1}=(\phi(x))^{-1}=\phi(x^{-1})\in\phi(H)$. But $x\in H$, so $x^{-1}\in H$, therefore $x^{-1}\in\phi(H)$. +- If $x,y\in \phi(H)$, then $x,y=\phi(a),\phi(b)$ for some $a,b\in H$. So $xy=\phi(a)\phi(b)=\phi(ab)\in\phi(H)$ (by homomorphism). Since $ab\in H$, $xy\in\phi(H)$. + +--- + +(4) If $K\leq G'$ then $\phi^{-1}(K)\leq G$, where $\phi^{-1}(K)=\{a\in G|\phi(a)\in K\}$. + +- $e'\in K$ implies that $e=\phi^{-1}(e')\in\phi^{-1}(K)$. +- If $x\in \phi^{-1}(K)$, then $x=\phi(a)$ for some $a\in G$. So $x^{-1}=(\phi(x))^{-1}=\phi(x^{-1})\in\phi^{-1}(K)$. But $x\in G$, so $x^{-1}\in G$, therefore $x^{-1}\in\phi^{-1}(K)$. +- If $x,y\in \phi^{-1}(K)$, then $x,y=\phi(a),\phi(b)$ for some $a,b\in G$. So $xy=\phi(a)\phi(b)=\phi(ab)\in\phi^{-1}(K)$ (by homomorphism). Since $ab\in G$, $xy\in\phi^{-1}(K)$. + +
+ +#### Definition for kernel and image of a group homomorphism + +Let $G,G'$ be groups and $\phi:G\to G'$ be a group homomorphism. + +$\operatorname{ker}(\phi)=\{a\in G|\phi(a)=e'\}=\phi^{-1}(\{e'\})$ is called the kernel of $\phi$. + +Facts: + +- $\operatorname{ker}(\phi)$ is a subgroup of $G$. (proof by previous corollary (4)) +- $\phi$ is onto if and only if $\operatorname{ker}(\phi)=\{e\}$ (the trivial subgroup of $G$). (proof forward, by definition of one-to-one; backward, if $\phi(a)=\phi(b)$, then $\phi(a)\phi(b)^{-1}=e'$, so $\phi(a)\phi(b^{-1})=e'$, so $ab^{-1}=e$, so $a,b=e$, so $a=b$)