update
This commit is contained in:
@@ -142,3 +142,7 @@ is a pure state.
|
|||||||
|
|
||||||
QED
|
QED
|
||||||
</details>
|
</details>
|
||||||
|
|
||||||
|
## Drawing the connection between the space $S^{2n+1}$, $CP^n$, and $\mathbb{R}$
|
||||||
|
|
||||||
|
##
|
||||||
|
|||||||
@@ -66,7 +66,9 @@ The Haar measure is the unique probability measure that is invariant under the a
|
|||||||
|
|
||||||
_The existence and uniqueness of the Haar measure is a theorem in compact lie group theory. For this research topic, we will not prove it._
|
_The existence and uniqueness of the Haar measure is a theorem in compact lie group theory. For this research topic, we will not prove it._
|
||||||
|
|
||||||
### Sub-Gaussian concentration
|
### Maxwell-Boltzmann distribution and projection of high-dimensional sphere
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
### Random sampling on the $CP^n$
|
### Random sampling on the $CP^n$
|
||||||
|
|
||||||
@@ -90,9 +92,6 @@ $$
|
|||||||
S_{m,n}=\sum_{k=n+1}^{mn}\frac{1}{k}-\frac{m-1}{2n}\simeq \ln m-\frac{m}{2n}
|
S_{m,n}=\sum_{k=n+1}^{mn}\frac{1}{k}-\frac{m-1}{2n}\simeq \ln m-\frac{m}{2n}
|
||||||
$$
|
$$
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
## References
|
## References
|
||||||
|
|
||||||
- [The random Matrix Theory of the Classical Compact groups](https://case.edu/artsci/math/esmeckes/Haar_book.pdf)
|
- [The random Matrix Theory of the Classical Compact groups](https://case.edu/artsci/math/esmeckes/Haar_book.pdf)
|
||||||
|
|||||||
@@ -42,7 +42,7 @@ Let $\sigma_n(A)$ denotes the normalized area of $A$ on $n$ dimensional sphere $
|
|||||||
|
|
||||||
Let $\epsilon>0$. Then for any subset $A\subset S^n$, given the area $\sigma_n(A)$, the spherical caps minimize the volume of the $\epsilon$-neighborhood of $A$.
|
Let $\epsilon>0$. Then for any subset $A\subset S^n$, given the area $\sigma_n(A)$, the spherical caps minimize the volume of the $\epsilon$-neighborhood of $A$.
|
||||||
|
|
||||||
The above two inequalities is not proved in the Book _High-dimensional probability_.
|
> The above two inequalities is not proved in the Book _High-dimensional probability_. But you can find it in the Appendix C of Gromov's book _Metric Structures for Riemannian and Non-Riemannian Spaces_.
|
||||||
|
|
||||||
To continue prove the theorem, we use sub-Gaussian concentration *(Chapter 3 of _High-dimensional probability_ by Roman Vershynin)* of sphere $\sqrt{n}S^n$.
|
To continue prove the theorem, we use sub-Gaussian concentration *(Chapter 3 of _High-dimensional probability_ by Roman Vershynin)* of sphere $\sqrt{n}S^n$.
|
||||||
|
|
||||||
@@ -116,7 +116,7 @@ $$
|
|||||||
|
|
||||||
Hardcore computing may generates the bound but M. Gromov did not make the detailed explanation here.
|
Hardcore computing may generates the bound but M. Gromov did not make the detailed explanation here.
|
||||||
|
|
||||||
> Detail proof by Takashi Shioya.
|
> Detailed proof by Takashi Shioya.
|
||||||
>
|
>
|
||||||
> The central idea is to draw the connection between the given three topological spaces, $S^{2n+1}$, $CP^n$ and $\mathbb{R}$.
|
> The central idea is to draw the connection between the given three topological spaces, $S^{2n+1}$, $CP^n$ and $\mathbb{R}$.
|
||||||
|
|
||||||
@@ -176,10 +176,58 @@ $$
|
|||||||
|
|
||||||
as $n\to \infty$.
|
as $n\to \infty$.
|
||||||
|
|
||||||
|
note that $\lim_{n\to \infty}{1-\frac{a}{n}}=e^{-a}$ for any $a>0$.
|
||||||
|
|
||||||
$(n-\|x\|^2)^{\frac{n-k}{2}}=\left(n(1-\frac{\|x\|^2}{n})\right)^{\frac{n-k}{2}}\to n^{\frac{n-k}{2}}\exp(-\frac{\|x\|^2}{2})$
|
$(n-\|x\|^2)^{\frac{n-k}{2}}=\left(n(1-\frac{\|x\|^2}{n})\right)^{\frac{n-k}{2}}\to n^{\frac{n-k}{2}}\exp(-\frac{\|x\|^2}{2})$
|
||||||
|
|
||||||
|
So
|
||||||
|
|
||||||
|
$$
|
||||||
|
\begin{aligned}
|
||||||
|
\frac{(n-\|x\|^2)^{\frac{n-k}{2}}}{\int_{\|x\|\leq \sqrt{n}}(n-\|x\|^2)^{\frac{n-k}{2}}dx}&=\frac{e^{-\frac{\|x\|^2}{2}}}{\int_{x\in \mathbb{R}^k}e^{-\frac{\|x\|^2}{2}}dx}\\
|
||||||
|
&=\frac{1}{(2\pi)^{\frac{k}{2}}}e^{-\frac{\|x\|^2}{2}}\\
|
||||||
|
&=\frac{d\gamma^k(x)}{dx}
|
||||||
|
\end{aligned}
|
||||||
|
$$
|
||||||
|
|
||||||
|
QED
|
||||||
|
|
||||||
</details>
|
</details>
|
||||||
|
|
||||||
|
#### Proof of the Levy's concentration theorem via the Maxwell-Boltzmann distribution law
|
||||||
|
|
||||||
|
We use the Maxwell-Boltzmann distribution law and Levy's isoperimetric inequality to prove the Levy's concentration theorem.
|
||||||
|
|
||||||
|
The goal is the same as the Gromov's version, first we bound the probability of the sub-level set of $f$ by the $\kappa_n(\epsilon)$ function by Levy's isoperimetric inequality. Then we claim that the $\kappa_n(\epsilon)$ function is bounded by the Gaussian distribution.
|
||||||
|
|
||||||
|
<details>
|
||||||
|
<summary>Proof</summary>
|
||||||
|
|
||||||
|
Let $f:S^n\to \mathbb{R}$ be a 1-Lipschitz function.
|
||||||
|
|
||||||
|
We define $\kappa_n(\epsilon)$ as the following:
|
||||||
|
|
||||||
|
$$
|
||||||
|
\kappa_n(\epsilon)=\frac{\operatorname{vol}_{n-k}(\pi_{n,k}^{-1}(\epsilon))}{\operatorname{vol}_k(S^n(\sqrt{n}))}=\frac{\int_\epsilon^{\frac{\pi}{2}}\cos^{n-1}(t)dt}{\int_0^{\frac{\pi}{2}}\cos^{n-1}(t)dt}
|
||||||
|
$$
|
||||||
|
|
||||||
|
By the Levy's isoperimetric inequality, and the Maxwell-Boltzmann distribution law, we have
|
||||||
|
|
||||||
|
$$
|
||||||
|
\mu\{x\in S^n: |f(x)-a_0|\geq\epsilon\} < \kappa_n(\epsilon)\leq 2\exp(-\frac{(n-1)\epsilon^2}{2})
|
||||||
|
$$
|
||||||
|
</details>
|
||||||
|
|
||||||
|
## Levy's Isoperimetric inequality
|
||||||
|
|
||||||
|
> This section is from the Appendix $C_+$ of Gromov's book _Metric Structures for Riemannian and Non-Riemannian Spaces_.
|
||||||
|
|
||||||
|
Not very edible for undergraduates.
|
||||||
|
|
||||||
|
### Riemannian manifolds
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
## References
|
## References
|
||||||
|
|
||||||
- [High-dimensional probability by Roman Vershynin](https://www.math.uci.edu/~rvershyn/papers/HDP-book/HDP-2.pdf)
|
- [High-dimensional probability by Roman Vershynin](https://www.math.uci.edu/~rvershyn/papers/HDP-book/HDP-2.pdf)
|
||||||
|
|||||||
Reference in New Issue
Block a user