diff --git a/content/Math4202/Math4202_L6.md b/content/Math4202/Math4202_L6.md new file mode 100644 index 0000000..e173b04 --- /dev/null +++ b/content/Math4202/Math4202_L6.md @@ -0,0 +1,164 @@ +# Math4202 Topology II (Lecture 5) + +## Manifolds + +### Imbedding of Manifolds + +#### Definition for partition of unity + +Let $\{U_i\}_{i=1}^n$ be a finite open cover of topological space $X$. An indexed family of **continuous** function $\phi_i:X\to[0,1]$ for $i=1,...,n$ is said to be a **partition of unity** dominated by $\{U_i\}_{i=1}^n$ if + +1. $\operatorname{supp}(\phi_i)=\overline{\{x\in X: \phi_i(x)\neq 0\}}\subseteq U_i$ (the closure of points where $\phi_i(x)\neq 0$ is in $U_i$) for all $i=1,...,n$ +2. $\sum_{i=1}^n \phi_i(x)=1$ for all $x\in X$ (partition of function to $1$) + +#### Existence of finite partition of unity + +Let $\{U_i\}_{i=1}^n$ be a **finite open cover** of a **normal** space $X$ (Every pair of closed sets in $X$ can be separated by two open sets in $X$). + +Then there exists a partition of unity dominated by $\{U_i\}_{i=1}^n$. + +_A more generalized version, If the space is paracompact, then there exists a partition of unity dominated by $\{U_i\}_{i\in I}$ with locally finite. (Theorem 41.7)_ + +We will prove for the finite partition of unity. + +
+Proof for finite partition of unity + +Some intuitions: + +By definition for partition of unity, consider the sets $W_i,V_i$ defined as + +$$ +W_i=f^{-1}_i((\frac{1}{2n},1])\subseteq f^{-1}_i([\frac{1}{2n},1])\subseteq V_i=f^{-1}_i((0,1])\subseteq \operatorname{supp}(f_i)\subseteq U_i +$$ + +$$ +V_1\subseteq \overline{V_1}\subseteq U_1 +$$ + +Note that $V_i$ is open and $\overline {V_i}\subseteq U_i$. + +And $\bigcup_{i=1}^n V_i=X$. + +and $W_i$ is open and $\overline{W_i}\subseteq V_i$. + +And $\bigcup_{i=1}^n W_i=X$. + +--- + +**Step 1**: + +$\exists$ V_i$ ope subsets $i=1,\dots,n$ such that $\overline{V_i}\subseteq U_i$, and $\bigcup_{i=1}^n V_i=X$. + +For $i=1$, consider $A_1=X-(U_2\cup U_3\cup \dots \cup U_n)$. Therefore $A_1$ is closed, and $A_1\cup U_1=X$. + +So $A_1\subseteq U_1$. + +Note that $A_1$ and $X-U_1$ are disjoint closed subsets of $X$. + +Since $X$ is normal, we can separate disjoint closed subsets $A_1$ and $X-U_1$. + +So we have $A_1\subset V_1\subseteq \overline{V_1}\subseteq U_1$ (by [normal space proposition](https://notenextra.trance-0.com/Math4201/Math4201_L37/#proposition-of-normal-spaces)). + +For $i=2$, note that $V_1\cup\left( \bigcup_{i=2}^n U_i\right)=X$, + +Take $A_2=X-\left(V_1\cup\left( \bigcup_{i=3}^n U_i\right)\right)$ (skipping $U_2$). + +Then we have $V_2\subseteq \overline{V_2}\subseteq U_2$. + +For $i=j$, we have + +$$ +A_j=X-\left(\left(\bigcup_{i=1}^{j-1}V_i\right)\cup \left(\bigcup_{i=j+1}^n U_i\right)\right) +$$ + +and $\bigcup_{i=1}^n V_i=X$. + +Repeat the above construction for $\{V_i\}_{i=1}^n$. + +Then we have $\{W_i\}_{i=1}^n$ open and $W_i\subseteq \overline{W_i}\subseteq V_i\subseteq \overline{V_i}\subseteq U_i$. + +And $\bigcup_{i=1}^n W_i=X$. + +**Step 2**: + +Using [Urysohn's lemma](https://notenextra.trance-0.com/Math4201/Math4201_L37/#urysohn-lemma). To construct the partition of unity $\phi_i$. + +> [!NOTE] +> +> Suppose +> +> - $X$ be a normal space +> - $Z_1,Z_2\subseteq X$ are closed +> - $Z_1$ and $Z_2$ are disjoint +> +> Then: +> +> There exists $f:X\to[0,1]$ such that +> +> - $f(Z_1)=\{0\}$ and $f(Z_2)=\{1\}$ +> - $f$ is continuous. + +Since $W_1\subseteq \overline{W_1}\subseteq V_1\subseteq \overline{V_1}\subseteq U_1$, + +Note that $\overline{W_1}$ and $X-V_1$ are two disjoint closed subsets of normal space $X$ + +Then we can have $f_1:X\to[0,1]$ such that $f_1(\overline{W_1})=\{0\}$ and $f_1(X-V_1)=\{1\}$. + +Then we have the remaining list of function $f_2,\dots,f_n$. + +Recall the definition for support of functions $\operatorname{supp}(f_i)=\overline{\{x\in X: f_i(x)>0\}}$. Since $f_i(x)=0$ for $x\in X-V_i$, we have $\operatorname{supp}(f_i)\subseteq \overline{V_i}$ + +Next we need to check $\sum_{i=1}^n f_i(x)=1$ for all $x\in X$. + +Note that $\forall x\in X$, since $\bigcup_{i=1}^n W_i=X$, then there exists $i$ such that $x\in W_i$, thus $f_i(x)=1$. + +And $\sum _{i=1}^n f_i(x)\geq 1$. + +Then we do normalization for our value. Set $F(x)=\sum_{i=1}^n f_i(x)$. + +Since $F(x)$ is sum of continuous functions, $F$ is continuous. + +Then we define $\phi_i=f_i/F(x)$, since $F(x)\geq 1$, we are safe to divide by $F(x)$ and $\phi_i(x)$ is continuous. + +And $\operatorname{supp}(\phi_i)=\operatorname{supp}(f_i)\subseteq \overline{V_i}\subseteq U_i$. + +And $\sum_{i=1}^n \phi_i(x)=\frac{\sum_{i=1}^n f_i(x)}{F(x)}=\frac{F(x)}{F(x)}=1$ for all $x\in X$. + +
+ +### Some Extension + +#### Definition of paracompact space + +Locally finite: $\forall x\in X$, $\exists$ open $x\in U$ such that $U$ only intersects finitely many open sets in $\mathcal{B}$. + +A space $X$ is paracompact if every open cover $A$ of $X$ has a **locally finite** refinement $\mathcal{B}$ of $A$ that covers $X$. + +## Algebraic Topology + +Homeomorphism: A topological space $X$ is homeomorphic to a topological space $Y$ if there exists a homeomorphism $f:X\to Y$ + +- $f$ is continuous +- $f^{-1}$ is continuous +- $f$ is bijective + +Equivalence relation: If $\sim$ satisfies the following: + +- $\sim$ is reflexive $\forall x\in X, x\sim x$ +- $\sim$ is symmetric $\forall x,y\in X, x\sim y\implies y\sim x$ +- $\sim$ is transitive $\forall x,y,z\in X, x\sim y, y\sim z\implies x\sim z$ + +Homeomorphism is an equivalence relation. + +- Reflexive: identity map +- Symmetric: inverse map is also homeomorphism +- Transitive: composition of homeomorphism is also homeomorphism + +Main Question: classify topological space up to homeomorphism. + +### Invariant in Mathematics + +Quantities associated with topological spaces that don't change under homeomorphism. + +We want to use some algebraic tools to classify topological spaces. \ No newline at end of file diff --git a/content/Math4202/_meta.js b/content/Math4202/_meta.js index 7bdf740..55468de 100644 --- a/content/Math4202/_meta.js +++ b/content/Math4202/_meta.js @@ -8,4 +8,5 @@ export default { Math4202_L3: "Topology II (Lecture 3)", Math4202_L4: "Topology II (Lecture 4)", Math4202_L5: "Topology II (Lecture 5)", + Math4202_L6: "Topology II (Lecture 6)", } diff --git a/content/Math4302/Math4302_L6.md b/content/Math4302/Math4302_L6.md new file mode 100644 index 0000000..da0d36f --- /dev/null +++ b/content/Math4302/Math4302_L6.md @@ -0,0 +1,149 @@ +# Math4302 Modern Algebra (Lecture 6) + +## Subgroups + +### Dihedral group + +The dihedral group $D_n$ is the group of all rotations and reflections about the center of the regular polygon of $n$ sides. + +$|S_n|=n!, |D_n|=2n$ + +### Cyclic group + +$G=\langle a\rangle=\{1,a,a^2,\cdots\}$ for some $a\in G$ + +
+Example of cyclic group + +$(\mathbb{Z}_n,+)$ is cyclic and $\mathbb{Z}_n=\langle 1\rangle=\{0,1,2,\cdots,n-1\}$ + +--- + +$(\mathbb{Z},+)$ is cyclic and $\mathbb{Z}=\langle 1\rangle=\langle -1 \rangle$ + +--- + +$S_3$ is not cyclic + +$\langle e\rangle=\{e\}$ +$\langle (1,2)\rangle=\{e,(1,2)\}$ +$\langle (1,3)\rangle=\{e,(1,3)\}$ +$\langle (2,3)\rangle=\{e,(2,3)\}$ +$\langle (1,2,3)\rangle=\{e,(1,2,3),(1,3,2)\}$ +$\langle (1,3,2)\rangle=\{e,(1,3,2),(1,2,3)\}$ + +
+ +#### Every cyclic group is abelian + +Every cyclic group is abelian + +
+Proof + +Let $G=\langle a\rangle$ be a cyclic group, then $\forall g_1,g_2\in G$ we have $g_1g_2=g_2g_1$ since $g_1g_2=a^k_1a^k_2=a^{k_1+k_2}$ and $g_2g_1=a^k_2a^k_1=a^{k_1+k_2}$ + +
+ +#### Definition for order of element + +Let $G$ be a group, then the order of $g\in G$ is defined to be the size of the smallest subgroup containing $g$. + +If $|\langle g\rangle|$ is infinite, then we say that $g$ has infinite order. + +
+Example of order of element + +$5$ in $(\mathbb{Z},+)$ has infinite order. + +--- + +$5$ in $(\mathbb{Z}_{10},+)$ has order $2$. + +$\langle 5\rangle=\{0,5\}$. + +--- + +$5$ in $(\mathbb{Z}_{6},+)$ has order $6$. + +$\langle 5\rangle=\{0,5,4,3,2,1\}$. + +
+ +#### Lemma for order of element + +Let $G$ be a group, then $a\in G$ has order $n$ if $n$ is the smallest positive integer such that $a^n=e$. + +
+Proof + +There are 2 cases: + +Case 1: + +There is no positive $n$ such that $a^n=e$. + +Then $a^i\neq a^j$ if $i\neq j, i,j\in \mathbb{N}$. + +Reason: if $a^i=a^j$, then $a^{i-j}=e$. + +Then the order of group is infinite. + +Case 2: + +There is a positive $n$ such that $a^n=e$. + +Let $n$ be the smallest such positive integer. Then we claim $\langle a^n\rangle=\{e,a^1,a^2,\cdots,a^{n-1}\}$. + +We claim they are all distinct. + +Suppose not, then we can have $a^i=a^j$ for $i\neq j$, $0\leq i,j\leq n-1$. + +Then $a^{i-j}=e$ but $i-j\leq n-1$. Therefore $n$ is not the smallest positive integer such that $a^n=e$. + +
+ +#### Theorem for cyclic group up to isomorphism + +Suppose $G$ is a cyclic group, + +- If $|G|=n$, then $|G|\simeq \mathbb{Z}_n^+$ +- If $|G|=\infty$, then $|G|\simeq \mathbb{Z}$. + +
+Proof + +Case 1: + +If $|G|=\infty$, then we can map $G$ to $(\mathbb{Z},+)$, where $G=\langle a\rangle$. $\phi(n)=a^n$. This gives a bijection between $G$ and $(\mathbb{Z},+)$. + +where $\phi(n+m)=a^{n+m}=a^n a^m=\phi(n)\phi(m)$. + +Case 2: + +If $|G|=n$, then we can map $G$ to $(\mathbb{Z}_n,+)$, where $G=\langle a\rangle$. $\phi(n)=a^n$. This gives a bijection between $G$ and $(\mathbb{Z}_n,+)$. + +where $\phi(n+m)=\phi(r)=a^{n+m}=a^n a^m=\phi(n)\phi(m)$. +
+ +
+Example + +Let $H=\langle (12)(345)\rangle\subseteq S_5$. Then $H\simeq \mathbb{Z}_6^+$. + +Let $\tau=(12)(345)$ + +All the elements of $H$ are: + +- $\tau^0=(12)(345)$ +- $\tau^1=(453)$ +- $\tau^2=(12)(534)$ +- $\tau^3=(345)$ +- $\tau^4=(12)(453)$ +- $\tau^5=(534)$ + +
+ +#### GCD and order + +If $G=\langle a\rangle$, then $H=\langle a^k\rangle$, $|H|=\frac{n}{d}$ where $d=\operatorname{gcd}(n,k)$. \ No newline at end of file diff --git a/content/Math4302/_meta.js b/content/Math4302/_meta.js index df576d2..0534b08 100644 --- a/content/Math4302/_meta.js +++ b/content/Math4302/_meta.js @@ -8,4 +8,5 @@ export default { Math4302_L3: "Modern Algebra (Lecture 3)", Math4302_L4: "Modern Algebra (Lecture 4)", Math4302_L5: "Modern Algebra (Lecture 5)", + Math4302_L6: "Modern Algebra (Lecture 6)", }