update notes

This commit is contained in:
Zheyuan Wu
2024-11-18 14:07:36 -06:00
parent ee64606236
commit f08d8ff674
47 changed files with 5863 additions and 0 deletions

View File

@@ -0,0 +1,97 @@
# Lecture 2
## Probability review
Sample space $S=$ set of outcomes (possible results of experiments)
Event $A\subseteq S$
$P[A]=P[$ outcome $x\in A]$
$P[\{x\}]=P(x)$
Conditional probability:
$P[A|B]={P[A\cap B]\over P[B]}$
Assuming $B$ is the known information. Moreover, $P[B]>0$
Probability that $A$ and $B$ occurring: $P[A\cap B]=P[A|B]\cdot P[B]$
$P[B\cap A]=P[B|A]\cdot P[A]$
So $P[A|B]={P[B|A]\cdot P[A]\over P[B]}$ (Bayes Theorem)
**There is always a chance that random guess would be the password... Although really, really, low...**
### Law of total probability
Let $S=\bigcup_{i=1}^n B_i$. and $B_i$ are disjoint events.
$A=\bigcup_{i=1}^n A\cap B_i$ ($A\cap B_i$ are all disjoint)
$P[A]=\sum^n_{i=1} P[A|B_i]\cdot P[B_i]$
## Back to cryptography
Defining security.
### Perfect Secrecy (Shannon Secrecy)
$K\gets Gen()$ $K\in\mathcal{K}$
$c\gets Enc_K(m)$ or we can also write as $c\gets Enc(K,m)$ for $m\in \mathcal{M}$
And the decryption procedure:
$m'\gets Dec_K(c')$, $m'$ might be null.
$P[K\gets Gen(): Dec_K(Enc_K(m))=m]=1$
#### Shannon Secrecy
Distribution $D$ over the message space $\mathcal{M}$
$P[K\gets Gen;m\gets D: m=m'|c\gets Enc_K(m)]=P[m\gets D: m=m']$
Basically, we cannot gain any information from the encoded message.
Code shall not contain any information changing the distribution of expectation of message after viewing the code.
**NO INFO GAINED**
#### Perfect Secrecy
For any 2 messages, say $m_1,m_2\in \mathcal{M}$ and for any possible cipher $c$,
$P[K\gets Gen:c\gets Enc_K(m_1)]=P[K\gets Gen():c\gets Enc_K(m_2)]$
For a fixed $c$, any message could be encrypted to that...
#### Theorem
Shannon secrecy is equivalent to perfect secrecy.
Proof:
If a crypto-system satisfy perfect secrecy, then it also satisfy Shannon secrecy.
Let $(Gen, Enc,Dec)$ be a perfectly secret crypto-system with $\mathcal{K}$ and $\mathcal{M}$.
Let $D$ be any distribution over messages.
Let $m'\in \mathcal{M}$.
$$
={P_K[c\gets Enc_K(m')]\cdot P[m=m']\over P_{K,m}[c\gets Enc_K(m)]}\\
$$
$$
P[K\gets Gen();m\gets D:m=m'|c\gets Enc_K(m)]={P_{K,m}[c\gets Enc_K(m)\vert m=m']\cdot P[m=m']\over P_{K,m}[c\gets Enc_K(m)]}\\
P_{K,m}[c\gets Enc_K(m)]=\sum^n_{i=1}P_{K,m}[c\gets Enc_k(m)|m=m_i]\cdot P[m=m_i]\\
=\sum^n_{i=1}P_{K,m_i}[c\gets Enc_k(m_i)]\cdot P[m=m_i]
$$
and $P_{K,m_i}[c\gets Enc_K(m_i)]$ is constant due to perfect secrecy
$\sum^n_{i=1}P_{K,m_i}[c\gets Enc_K(m_i)]\cdot P[m=m_i]=\sum^n_{i=1} P[m=m_i]=1$