update notes
This commit is contained in:
97
pages/CSE442T/CSE442T_L2.md
Normal file
97
pages/CSE442T/CSE442T_L2.md
Normal file
@@ -0,0 +1,97 @@
|
||||
# Lecture 2
|
||||
|
||||
## Probability review
|
||||
|
||||
Sample space $S=$ set of outcomes (possible results of experiments)
|
||||
|
||||
Event $A\subseteq S$
|
||||
|
||||
$P[A]=P[$ outcome $x\in A]$
|
||||
|
||||
$P[\{x\}]=P(x)$
|
||||
|
||||
Conditional probability:
|
||||
|
||||
$P[A|B]={P[A\cap B]\over P[B]}$
|
||||
|
||||
Assuming $B$ is the known information. Moreover, $P[B]>0$
|
||||
|
||||
Probability that $A$ and $B$ occurring: $P[A\cap B]=P[A|B]\cdot P[B]$
|
||||
|
||||
$P[B\cap A]=P[B|A]\cdot P[A]$
|
||||
|
||||
So $P[A|B]={P[B|A]\cdot P[A]\over P[B]}$ (Bayes Theorem)
|
||||
|
||||
**There is always a chance that random guess would be the password... Although really, really, low...**
|
||||
|
||||
### Law of total probability
|
||||
|
||||
Let $S=\bigcup_{i=1}^n B_i$. and $B_i$ are disjoint events.
|
||||
|
||||
$A=\bigcup_{i=1}^n A\cap B_i$ ($A\cap B_i$ are all disjoint)
|
||||
|
||||
$P[A]=\sum^n_{i=1} P[A|B_i]\cdot P[B_i]$
|
||||
|
||||
## Back to cryptography
|
||||
|
||||
Defining security.
|
||||
|
||||
### Perfect Secrecy (Shannon Secrecy)
|
||||
|
||||
$K\gets Gen()$ $K\in\mathcal{K}$
|
||||
|
||||
$c\gets Enc_K(m)$ or we can also write as $c\gets Enc(K,m)$ for $m\in \mathcal{M}$
|
||||
|
||||
And the decryption procedure:
|
||||
|
||||
$m'\gets Dec_K(c')$, $m'$ might be null.
|
||||
|
||||
$P[K\gets Gen(): Dec_K(Enc_K(m))=m]=1$
|
||||
|
||||
#### Shannon Secrecy
|
||||
|
||||
Distribution $D$ over the message space $\mathcal{M}$
|
||||
|
||||
$P[K\gets Gen;m\gets D: m=m'|c\gets Enc_K(m)]=P[m\gets D: m=m']$
|
||||
|
||||
Basically, we cannot gain any information from the encoded message.
|
||||
|
||||
Code shall not contain any information changing the distribution of expectation of message after viewing the code.
|
||||
|
||||
**NO INFO GAINED**
|
||||
|
||||
#### Perfect Secrecy
|
||||
|
||||
For any 2 messages, say $m_1,m_2\in \mathcal{M}$ and for any possible cipher $c$,
|
||||
|
||||
$P[K\gets Gen:c\gets Enc_K(m_1)]=P[K\gets Gen():c\gets Enc_K(m_2)]$
|
||||
|
||||
For a fixed $c$, any message could be encrypted to that...
|
||||
|
||||
#### Theorem
|
||||
|
||||
Shannon secrecy is equivalent to perfect secrecy.
|
||||
|
||||
Proof:
|
||||
|
||||
If a crypto-system satisfy perfect secrecy, then it also satisfy Shannon secrecy.
|
||||
|
||||
Let $(Gen, Enc,Dec)$ be a perfectly secret crypto-system with $\mathcal{K}$ and $\mathcal{M}$.
|
||||
|
||||
Let $D$ be any distribution over messages.
|
||||
|
||||
Let $m'\in \mathcal{M}$.
|
||||
|
||||
$$
|
||||
={P_K[c\gets Enc_K(m')]\cdot P[m=m']\over P_{K,m}[c\gets Enc_K(m)]}\\
|
||||
$$
|
||||
|
||||
$$
|
||||
P[K\gets Gen();m\gets D:m=m'|c\gets Enc_K(m)]={P_{K,m}[c\gets Enc_K(m)\vert m=m']\cdot P[m=m']\over P_{K,m}[c\gets Enc_K(m)]}\\
|
||||
P_{K,m}[c\gets Enc_K(m)]=\sum^n_{i=1}P_{K,m}[c\gets Enc_k(m)|m=m_i]\cdot P[m=m_i]\\
|
||||
=\sum^n_{i=1}P_{K,m_i}[c\gets Enc_k(m_i)]\cdot P[m=m_i]
|
||||
$$
|
||||
|
||||
and $P_{K,m_i}[c\gets Enc_K(m_i)]$ is constant due to perfect secrecy
|
||||
|
||||
$\sum^n_{i=1}P_{K,m_i}[c\gets Enc_K(m_i)]\cdot P[m=m_i]=\sum^n_{i=1} P[m=m_i]=1$
|
||||
Reference in New Issue
Block a user