update formats and lecture notes

This commit is contained in:
Trance-0
2025-10-31 11:52:02 -05:00
parent 9a9ca265ec
commit f13b49aa92
7 changed files with 154 additions and 20 deletions

View File

@@ -140,7 +140,6 @@ $$
is a pure state.
QED
</details>
## Drawing the connection between the space $S^{2n+1}$, $CP^n$, and $\mathbb{R}$

View File

@@ -205,8 +205,6 @@ $$
\end{aligned}
$$
QED
</details>
#### Proof of the Levy's concentration theorem via the Maxwell-Boltzmann distribution law

View File

@@ -508,8 +508,6 @@ $$
f(x_j)=\sum_{a\in X_j} f(a)\epsilon_{a}^{(j)}(x_j)=f(x_j)
$$
QED.
</details>
Now, let $a=(a_1,a_2,\cdots,a_n)$ be a vector in $X$, and $x=(x_1,x_2,\cdots,x_n)$ be a vector in $X$. Note that $a_j,x_j\in X_j$ for $j=1,2,\cdots,n$.
@@ -540,8 +538,6 @@ $$
f(x)=\sum_{a\in X} f(a)\epsilon_a(x)=f(x)
$$
QED.
</details>
#### Definition of tensor product of basis elements
@@ -613,7 +609,6 @@ If $\sum_{i=1}^n a_i u_i\otimes v_i=\sum_{j=1}^m b_j u_j\otimes v_j$, then $a_i=
Then $\sum_{i=1}^n a_i T_1(u_i)\otimes T_2(v_i)=\sum_{j=1}^m b_j T_1(u_j)\otimes T_2(v_j)$.
QED
</details>
An example of