update formats and lecture notes
This commit is contained in:
@@ -140,7 +140,6 @@ $$
|
||||
|
||||
is a pure state.
|
||||
|
||||
QED
|
||||
</details>
|
||||
|
||||
## Drawing the connection between the space $S^{2n+1}$, $CP^n$, and $\mathbb{R}$
|
||||
|
||||
@@ -205,8 +205,6 @@ $$
|
||||
\end{aligned}
|
||||
$$
|
||||
|
||||
QED
|
||||
|
||||
</details>
|
||||
|
||||
#### Proof of the Levy's concentration theorem via the Maxwell-Boltzmann distribution law
|
||||
|
||||
@@ -508,8 +508,6 @@ $$
|
||||
f(x_j)=\sum_{a\in X_j} f(a)\epsilon_{a}^{(j)}(x_j)=f(x_j)
|
||||
$$
|
||||
|
||||
QED.
|
||||
|
||||
</details>
|
||||
|
||||
Now, let $a=(a_1,a_2,\cdots,a_n)$ be a vector in $X$, and $x=(x_1,x_2,\cdots,x_n)$ be a vector in $X$. Note that $a_j,x_j\in X_j$ for $j=1,2,\cdots,n$.
|
||||
@@ -540,8 +538,6 @@ $$
|
||||
f(x)=\sum_{a\in X} f(a)\epsilon_a(x)=f(x)
|
||||
$$
|
||||
|
||||
QED.
|
||||
|
||||
</details>
|
||||
|
||||
#### Definition of tensor product of basis elements
|
||||
@@ -613,7 +609,6 @@ If $\sum_{i=1}^n a_i u_i\otimes v_i=\sum_{j=1}^m b_j u_j\otimes v_j$, then $a_i=
|
||||
|
||||
Then $\sum_{i=1}^n a_i T_1(u_i)\otimes T_2(v_i)=\sum_{j=1}^m b_j T_1(u_j)\otimes T_2(v_j)$.
|
||||
|
||||
QED
|
||||
</details>
|
||||
|
||||
An example of
|
||||
|
||||
@@ -145,7 +145,8 @@ Since $b$ is fixed, so this is in 1-1 correspondence with $A$, so it's countable
|
||||
|
||||
Let $A$ be the set of all sequences for 0s and 1s. Then $A$ is uncountable.
|
||||
|
||||
Proof:
|
||||
<details>
|
||||
<summary>Proof</summary>
|
||||
|
||||
Let $E\subset A$ be a countable subset. We'll show $A\backslash E\neq \phi$ (i.e.$\exists t\in A$ such that $t\notin E$)
|
||||
|
||||
@@ -155,4 +156,4 @@ Then we define a new sequence $t$ which differs from $S_1$'s first bit and $S_2$
|
||||
|
||||
This is called Cantor's diagonal argument.
|
||||
|
||||
QED
|
||||
</details>
|
||||
|
||||
@@ -24,7 +24,8 @@ It should be empty. Proof any point cannot be in two balls at the same time. (By
|
||||
|
||||
$p\in E'\implies \forall r>0,B_r(p)\cap E$ is infinite.
|
||||
|
||||
Proof:
|
||||
<details>
|
||||
<summary>Proof</summary>
|
||||
|
||||
We will prove the contrapositive.
|
||||
|
||||
@@ -41,7 +42,7 @@ let $B_s(p)\cap E)\backslash \{p\}={q_1,...,q_n}$
|
||||
|
||||
Then $(B_s(p)\cap E)\backslash \{p\}=\phi$, so $p\notin E$
|
||||
|
||||
QED
|
||||
</details>
|
||||
|
||||
#### Theorem 2.22 De Morgan's law
|
||||
|
||||
@@ -68,7 +69,8 @@ $E$ is open $\iff$ $E^c$ is closed.
|
||||
>$\phi$, $\R$ is both open and closed. "clopen set"
|
||||
>$[0,1)$ is not open and not closed. bad...
|
||||
|
||||
Proof:
|
||||
<details>
|
||||
<summary>Proof</summary>
|
||||
|
||||
$\impliedby$ Suppose $E^c$ is closed. Let $x\in E$, so $x\notin E^c$
|
||||
|
||||
@@ -95,21 +97,23 @@ $$
|
||||
|
||||
So $(E^c)'\subset E^c$
|
||||
|
||||
QED
|
||||
</details>
|
||||
|
||||
#### Theorem 2.24
|
||||
|
||||
##### An arbitrary union of open sets is open
|
||||
|
||||
Proof:
|
||||
<details>
|
||||
<summary>Proof</summary>
|
||||
|
||||
Suppose $\forall \alpha, G_\alpha$ is open. Let $x\in \bigcup _{\alpha} G_\alpha$. Then $\exists \alpha_0$ such that $x\in G_{\alpha_0}$. Since $G_{\alpha_0}$ is open, $\exists r>0$ such that $B_r(x)\subset G_{\alpha_0}$ Then $B_r(x)\subset G_{\alpha_0}\subset \bigcup_{\alpha} G_\alpha$
|
||||
|
||||
QED
|
||||
</details>
|
||||
|
||||
##### A finite intersection of open set is open
|
||||
|
||||
Proof:
|
||||
<details>
|
||||
<summary>Proof</summary>
|
||||
|
||||
Suppose $\forall i\in \{1,...,n\}$, $G_i$ is open.
|
||||
|
||||
@@ -117,7 +121,7 @@ Let $x\in \bigcap^n_{i=1}G_i$, then $\forall i\in \{1,..,n\}$ and $G_i$ is open,
|
||||
|
||||
Let $r=min\{r_1,...,r_n\}$. Then $\forall i\in \{1,...,n\}$. $B_r(x)\subset B_{r_i}(x)\subset G_i$. So $B_r(x)\subset \bigcup_{i=1}^n G_i$
|
||||
|
||||
QED
|
||||
</details>
|
||||
|
||||
The other two can be proved by **Theorem 2.22,2.23**
|
||||
|
||||
@@ -131,7 +135,8 @@ Remark: Using the definition of $E'$, we have, $\bar{E}=\{p\in X,\forall r>0,B_r
|
||||
|
||||
$\bar {E}$ is closed.
|
||||
|
||||
Proof:
|
||||
<details>
|
||||
<summary>Proof</summary>
|
||||
|
||||
We will show $\bar{E}^c$ is open.
|
||||
|
||||
@@ -147,4 +152,4 @@ This proves (b)
|
||||
|
||||
So $\bar{E}^c$ is open
|
||||
|
||||
QED
|
||||
</details>
|
||||
135
content/Math4201/Math4201_L27.md
Normal file
135
content/Math4201/Math4201_L27.md
Normal file
@@ -0,0 +1,135 @@
|
||||
# Math4201 Topology I (Lecture 27)
|
||||
|
||||
## Continue on compact spaces
|
||||
|
||||
### Compact spaces
|
||||
|
||||
|
||||
#### Heine-Borel theorem
|
||||
|
||||
A subset $K\subseteq \mathbb{R}^n$ is compact if and only if it is closed and bounded with respect to the standard metric on $\mathbb{R}^n$.
|
||||
|
||||
#### Definition of bounded
|
||||
|
||||
$A\subseteq \mathbb{R}^n$ is bounded if there exists $c\in \mathbb{R}^{>0}$ such that $d(x,y)<c$ for all $x,y\in A$.
|
||||
|
||||
<details>
|
||||
<summary>Proof for Heine-Borel theorem</summary>
|
||||
|
||||
Suppose $k\subseteq \mathbb{R}^n$ is compact.
|
||||
|
||||
Since $\mathbb{R}^n$ is Hausdorff, $K\subseteq \mathbb{R}^n$ is compact, so $K$ is closed subspace of $\mathbb{R}^n$. by Proposition of compact subspaces with Hausdorff property.
|
||||
|
||||
To show that $K$ is bounded, consider the open cover with the following balls:
|
||||
$$
|
||||
B_1(0), B_2(0), ..., B_n(0), ...
|
||||
$$
|
||||
|
||||
Since $K$ is compact, there are $n_1, ..., n_k\in \mathbb{N}$ such that $K\subseteq \bigcup_{i=1}^k B_{n_i}(0)$. Note that $B_{n_i}(0)$ is bounded, so $K$ is bounded. $\forall x,y\in B_{n_i}(0)$, $d(x,y)<2n_i$. So $K$ is bounded.
|
||||
|
||||
---
|
||||
|
||||
Suppose $K\subseteq \mathbb{R}^n$ is closed and bounded.
|
||||
|
||||
First let $M=[a_1,b_1]\times [a_2,b_2]\times \cdots \times [a_n,b_n]$.
|
||||
|
||||
This is compact because it is a product of compact spaces.
|
||||
|
||||
Since $K$ is bounded, we can find $[a_i,b_i]$s such that $K\subseteq M$.
|
||||
|
||||
Since $K$ is closed subspace of $\mathbb{R}^n$, $K$ is closed in $M$.
|
||||
|
||||
Since any closed subspace of a compact space is compact, $K$ is compact.
|
||||
|
||||
</details>
|
||||
|
||||
> [!WARNING]
|
||||
>
|
||||
> This theorem is not true for general topological spaces.
|
||||
>
|
||||
> For example, take $X=B_1(0)$ with the standard topology on $\mathbb{R}^n$.
|
||||
>
|
||||
> Take $K=B_1(0)$, this is not compact because it is not closed in $\mathbb{R}^n$.
|
||||
|
||||
#### Extreme Value Theorem
|
||||
|
||||
If $f:X\to \mathbb{R}$ is continuous map with $X$ being compact. Then $f$ attains its minimum and maximum.
|
||||
|
||||
<details>
|
||||
<summary>Proof</summary>
|
||||
|
||||
Let $M=\sup\{f(x)\mid x\in X\}$ and $m=\inf\{f(x)\mid x\in X\}$.
|
||||
|
||||
We want to show that there are $x_m,x_M\in X$ such that $f(x_m)=m$ and $f(x_M)=M$.
|
||||
|
||||
Consider the open covering of $X$ given as
|
||||
|
||||
$$
|
||||
\{U_\alpha\coloneqq f^{-1}((-\infty, \alpha))\}_{\alpha\in \mathbb{R}}
|
||||
$$
|
||||
|
||||
If $X$ doesn't attain its maximum, then this is an open covering of $X$:
|
||||
|
||||
1. $U_\alpha$ is open because $f$ is continuous and $(-\infty, \alpha)$ is open in $\mathbb{R}$.
|
||||
2. $\bigcup_{\alpha\in \mathbb{R}} U_\alpha = X$ because for any $x\in X$, by the assumption there is $x'\in X$ with $f(x)<f(x')$ (otherwise $f(x)$ is the maximum value). Then $x\in U_{f(x')}$.
|
||||
|
||||
So there is an open covering of $X$ and hence it's got a finite subcover $\{U_{\alpha_i}\}_{i=1}^n$.
|
||||
|
||||
$$
|
||||
X=\bigcup_{i=1}^n U_{\alpha_i}=\bigcup_{i=1}^n f^{-1}((-\infty, \alpha_i))=f^{-1}(-\infty, \alpha_k)
|
||||
$$
|
||||
|
||||
and $\alpha_1\leq \alpha_2\leq \cdots \leq \alpha_n$. There is $x_i$ such that $\alpha_i=f(x_i)$.
|
||||
|
||||
Note that $x_k\notin U_{\alpha_k}$ because $f(x_k)>\alpha_k$. So $x_k\notin X$. This contradicts the assumption that $X$ doesn't attain its maximum.
|
||||
|
||||
</details>
|
||||
|
||||
#### Theorem of uniform continuity
|
||||
|
||||
Let $f:(X,d)\to (X',d')$ be a continuous map between two metric spaces. **Let $X$ be compact**, then for any $\epsilon > 0$, there exists $\delta > 0$ such that for any $x_1,x_2\in X$, if $d(x_1,x_2)<\delta$, then $d'(f(x_1),f(x_2))<\epsilon$.
|
||||
|
||||
#### Definition of uniform continuous function
|
||||
|
||||
$f$ is uniformly continuous if for any $\epsilon > 0$, there exists $\delta > 0$ such that for any $x_1,x_2\in X$, if $d(x_1,x_2)<\delta$, then $d'(f(x_1),f(x_2))<\epsilon$.
|
||||
|
||||
<details>
|
||||
<summary>Example of uniform continuous function</summary>
|
||||
|
||||
Let $f(x)=x^2$ on $\mathbb{R}$.
|
||||
|
||||
This is not uniformly continuous because for fixed $\epsilon > 0$, the interval $\delta$ will converge to zero as $x_1,x_2$ goes to infinity.
|
||||
|
||||
---
|
||||
|
||||
However, if we take $f\mid_{[0,1]}$, this is uniformly continuous because for fixed $\epsilon > 0$, we can choose $\delta = \epsilon$.
|
||||
|
||||
</details>
|
||||
|
||||
#### Lebesgue number lemma
|
||||
|
||||
Let $X$ be a compact metric space and $\{U_\alpha\}_{\alpha\in I}$ be an open cover of $X$. Then there is $\delta>0$ such that for any two points $x_1,x_2\in X$ with $d(x_1,x_2)<\delta$, there is $\alpha\in I$ such that $x_1,x_2\in U_\alpha$.
|
||||
|
||||
<details>
|
||||
<summary>Proof of uniform continuity theorem</summary>
|
||||
|
||||
Let $\epsilon > 0$. be given and consider
|
||||
|
||||
$$
|
||||
\{f^{-1}(B_{\epsilon/2}^{d'}((x'))\}_{x'\in X'}
|
||||
$$
|
||||
|
||||
We claim that there is an open covering of $X$.
|
||||
|
||||
1. $f^{-1}(B_{\epsilon/2}^{d'}((x')))$ is open because $f$ is continuous and $B_{\epsilon/2}^{d'}((x'))$ is open in $X'$.
|
||||
2. $X=\bigcup_{x'\in X'} f^{-1}(B_{\epsilon/2}^{d'}((x')))$ because for any $x\in X$, $x\in f^{-1}(B_{\epsilon/2}^{d'}((f(x)))$.
|
||||
|
||||
Since $X$ is compact, there is a finite subcover $\{f^{-1}(B_{\epsilon/2}^{d'}((x')))\}_{i=1}^n$.
|
||||
|
||||
By Lebesgue number lemma, there is $\delta>0$ such that for any two points $x_1,x_2\in X$ with $d(x_1,x_2)<\delta$, there is $x'\in X'$ such that $x_1,x_2\in f^{-1}(B_{\epsilon/2}^{d'}((x')))$.
|
||||
|
||||
So $f(x_1),f(x_2)\in B_{\epsilon/2}^{d'}((x'))$.
|
||||
|
||||
Apply the triangle inequality with $d'(x_1,x')$ and $d'(x_2,x')$, we have $d'(f(x_1),f(x_2))<2\epsilon/2=\epsilon$.
|
||||
|
||||
</details>
|
||||
@@ -30,4 +30,5 @@ export default {
|
||||
Math4201_L24: "Topology I (Lecture 24)",
|
||||
Math4201_L25: "Topology I (Lecture 25)",
|
||||
Math4201_L26: "Topology I (Lecture 26)",
|
||||
Math4201_L27: "Topology I (Lecture 27)",
|
||||
}
|
||||
|
||||
Reference in New Issue
Block a user