From f37472cb1a3ebd1488f9e9d10a926debb07b2a03 Mon Sep 17 00:00:00 2001 From: Trance-0 <60459821+Trance-0@users.noreply.github.com> Date: Mon, 29 Sep 2025 23:42:28 -0500 Subject: [PATCH] updates --- .../Math401/Extending_thesis/Math401_S2.md | 2 +- .../Math401/Extending_thesis/Math401_S3.md | 3 +- .../Math401/Extending_thesis/Math401_S4.md | 139 ++++++++++++++++++ 3 files changed, 142 insertions(+), 2 deletions(-) create mode 100644 content/Math401/Extending_thesis/Math401_S4.md diff --git a/content/Math401/Extending_thesis/Math401_S2.md b/content/Math401/Extending_thesis/Math401_S2.md index c3eec28..983aea3 100644 --- a/content/Math401/Extending_thesis/Math401_S2.md +++ b/content/Math401/Extending_thesis/Math401_S2.md @@ -1,4 +1,4 @@ -# Math 401, Fall 2025: Thesis notes, S2, Majorana stellar representation of quantum states. +# Math 401, Fall 2025: Thesis notes, S2, Majorana stellar representation of quantum states ## Majorana stellar representation of quantum states diff --git a/content/Math401/Extending_thesis/Math401_S3.md b/content/Math401/Extending_thesis/Math401_S3.md index 5bfcca4..2e7f933 100644 --- a/content/Math401/Extending_thesis/Math401_S3.md +++ b/content/Math401/Extending_thesis/Math401_S3.md @@ -1 +1,2 @@ -# Math 401, Fall 2025: Thesis notes, S3, Special Barnard space \ No newline at end of file +# Math 401, Fall 2025: Thesis notes, S3, Coherent states and POVMs + diff --git a/content/Math401/Extending_thesis/Math401_S4.md b/content/Math401/Extending_thesis/Math401_S4.md new file mode 100644 index 0000000..793338f --- /dev/null +++ b/content/Math401/Extending_thesis/Math401_S4.md @@ -0,0 +1,139 @@ +# Math 401, Fall 2025: Thesis notes, S4, Bargmann space + +## Bargmann space (original) + +Also known as Segal-Bargmann space or Bargmann-Fock space. + +It is the space of [holomorphic functions](../../Math416/Math416_L3#definition-28-holomorphic-functions) that is square-integrable over the complex plane. + +> Section belows use [Remarks on a Hilbert Space of Analytic Functions](https://www.jstor.org/stable/71180) as the reference. + +A family of Hilbert spaces, $\mathfrak{F}_n(n=1,2,3,\cdots)$, is defined as follows: + +The element of $\mathfrak{F}_n$ are [entire](../../Math416/Math416_L13#definition-711) [analytic functions](../../Math416/Math416_L9#definition-analytic) in complex Euclidean space $\mathbb{C}^n$. $f:\mathbb{C}^n\to \mathbb{C}\in \mathfrak{F}_n$ + +Let $f,g\in \mathfrak{F}_n$. The inner product is defined by + +$$ +\langle f,g\rangle=\int_{\mathbb{C}^n} \overline{f(z)}g(z) d\mu_n(z) +$$ + +Let $z_k=x_k+iy_k$ be the complex coordinates of $z\in \mathbb{C}^n$. + +The measure $\mu_n$ is the defined by + +$$ +d\mu_n(z)=\pi^{-n}\exp(-\sum_{i=1}^n |z_i|^2)\prod_{k=1}^n dx_k dy_k +$$ + +
+Example + +For $n=2$, + +$$ +\mathfrak{F}_2=\text{ space of entire analytic functions on } \mathbb{C}^2\to \mathbb{C} +$$ + +$$ +\langle f,g\rangle=\int_{\mathbb{C}^2} \overline{f(z)}g(z) d\mu(z),z=(z_1,z_2) +$$ + +$$ +d\mu_2(z)=\frac{1}{\pi^2}\exp(-|z|^2)dx_1 dy_1 dx_2 dy_2 +$$ + +
+ +so that $f$ belongs to $\mathfrak{F}_n$ if and only if $\langle f,f\rangle<\infty$. + +This is absolutely terrible early texts, we will try to formulate it in a more modern way. + +> The section belows are from the lecture notes [Holomorphic method in analysis and mathematical physics](https://arxiv.org/pdf/quant-ph/9912054) + +## Complex function spaces + +### Holomorphic spaces + +Let $U$ be a non-empty open set in $\mathbb{C}^d$. Let $\mathcal{H}(U)$ be the space of holomorphic (or analytic) functions on $U$. + +Let $f\in \mathcal{H}(U)$, note that by definition of holomorphic on several complex variables, $f$ is continuous and holomorphic in each variable with the other variables fixed. + +Let $\alpha$ be a continuous, strictly positive function on $U$. + +$$ +\mathcal{H}L^2(U,\alpha)=\left\{F\in \mathcal{H}(U): \int_U |F(z)|^2 \alpha(z) d\mu(z)<\infty\right\}, +$$ + +where $\mu$ is the Lebesgue measure on $\mathbb{C}^d=\mathbb{R}^{2d}$. + +#### Theorem of holomorphic spaces + +1. For all $z\in U$, there exists a constant $c_z$ such that + $$ + |F(z)|^2\le c_z \|F\|^2_{L^2(U,\alpha)} + $$ + for all $F\in \mathcal{H}L^2(U,\alpha)$. +2. $\mathcal{H}L^2(U,\alpha)$ is a closed subspace of $L^2(U,\alpha)$, and therefore a Hilbert space. + +
+Proof + +First we check part 1. + +Let $z=(z_1,z_2,\cdots,z_d)\in U, z_k\in \mathbb{C}$. Let $P_s(z)$ be the "polydisk"of radius $s$ centered at $z$ defined as + +$$ +P_s(z)=\{v\in \mathbb{C}^d: |v_k-z_k| + +> [!TIP] +> +> [1.] states that point-wise evaluation of $F$ on $U$ is continuous. That is, for each $z\in U$, the map $\varphi: \mathcal{H}L^2(U,\alpha)\to \mathbb{C}$ that takes $F\in \mathcal{H}L^2(U,\alpha)$ to $F(z)$ is a continuous linear functional on $\mathcal{H}L^2(U,\alpha)$. This is false for ordinary non-holomorphic functions, e.g. $L^2$ spaces. + +#### Reproducing kernel + +Let $\mathcal{H}L^2(U,\alpha)$ be a holomorphic space. The reproducing kernel of $\mathcal{H}L^2(U,\alpha)$ is a function $K:U\times U\to \mathbb{C}$, $K(z,w),z,w\in U$ with the following properties: + +1. $K(z,w)$ is holomorphic in $z$ and anti-holomorphic in $w$. + $$ + K(w,z)=\overline{K(z,w)} + $$ + +2. For each fixed $z\in U$, $K(z,w)$ is a square integrable $d\alpha(w)$. For all $F\in \mathcal{H}L^2(U,\alpha)$, + $$ + F(z)=\int_U K(z,w)F(w) \alpha(w) dw + $$ + +3. If $F\in L^2(U,\alpha)$, let $PF$ denote the orthogonal projection of $F$ onto closed subspace $\mathcal{H}L^2(U,\alpha)$. Then + $$ + PF(z)=\int_U K(z,w)F(w) \alpha(w) dw + $$ + +4. For all $z,u\in U$, + $$ + \int_U K(z,w)K(w,u) \alpha(w) dw=K(z,u) + $$ + +5. For all $z\in U$, + $$ + |F(z)|^2\leq K(z,z) \|F\|^2_{L^2(U,\alpha)} + $$ + +### Bargmann space + +The Bargmann spaces are the holomorphic spaces + +$$ +\mathcal{H}L^2(\mathbb{C}^d,\mu_t) +$$ + +where + +$$ +\mu_t(z)=\text{ CONTINUE HERE } +$$ \ No newline at end of file