update
This commit is contained in:
@@ -1 +1,44 @@
|
||||
# Lecture 19
|
||||
# Math 4121 Lecture 19
|
||||
|
||||
## Continue on the "small set"
|
||||
|
||||
### Cantor set
|
||||
|
||||
#### Theorem: Cantor set is perfect, nowhere dense
|
||||
|
||||
Proved last lecture.
|
||||
|
||||
_Other construction of the set by removing the middle non-zero interval $(\frac{1}{n},n>0)$ and take the intersection of all such steps is called $SVC(n)$_
|
||||
|
||||
Back to $\frac{1}{3}$ Cantor set.
|
||||
|
||||
Every step we delete $\frac{2^{n-1}}{3^n}$ of the total "content".
|
||||
|
||||
Thus, the total length removed after infinitely many steps is:
|
||||
|
||||
$$
|
||||
\sum_{n=1}^{\infty} \frac{2^{n-1}}{3^n} = \frac{1}{3}\sum_{n=0}^{\infty} \left(\frac{2}{3}\right)^n=1
|
||||
$$
|
||||
|
||||
However, the quarter cantor set removes $\frac{3^{n-1}}{4^n}$ of the total "content", and the total length removed after infinitely many steps is:
|
||||
|
||||
_skip this part, some error occurred._
|
||||
|
||||
#### Monotonicity of outer content
|
||||
|
||||
If $S\subseteq T$, then $c_e(S)\leq c_e(T)$.
|
||||
|
||||
Proof:
|
||||
|
||||
If $C$ is cover of $T$, then $S\subseteq T\subseteq C$, so $C$ is a cover of $S$. Since $c_e(s)$ takes the inf over a larger set that $c_e(T)$, $c_e(S) \leq c_e(T)$.
|
||||
|
||||
QED
|
||||
|
||||
#### Theorem Osgorod's Lemma
|
||||
|
||||
If $S$ is closed and bounded, then
|
||||
|
||||
$$
|
||||
\lim_{k\to \infty} c_e(S_k)=c_e(S)
|
||||
$$
|
||||
|
||||
|
||||
@@ -21,9 +21,7 @@ export default {
|
||||
Math4121_L16: "Introduction to Lebesgue Integration (Lecture 16)",
|
||||
Math4121_L17: "Introduction to Lebesgue Integration (Lecture 17)",
|
||||
Math4121_L18: "Introduction to Lebesgue Integration (Lecture 18)",
|
||||
Math4121_L19: {
|
||||
display: 'hidden'
|
||||
},
|
||||
Math4121_L19: "Introduction to Lebesgue Integration (Lecture 19)",
|
||||
Math4121_L20: {
|
||||
display: 'hidden'
|
||||
},
|
||||
|
||||
Reference in New Issue
Block a user