diff --git a/pages/Math416/Math416_L12.md b/pages/Math416/Math416_L12.md new file mode 100644 index 0000000..9a5fd3b --- /dev/null +++ b/pages/Math416/Math416_L12.md @@ -0,0 +1,78 @@ +# Math 416 Lecture 12 + +## Continue on last class + +### Cauchy's Theorem on triangles + +Let $T$ be a triangle in $\mathbb{C}$ and $f$ be holomorphic on $T$. Then + +$$ +\int_T f(\zeta) d\zeta = 0 +$$ + +### Cauchy's Theorem for Convex Sets + +Let's start with a simple case: $f(\zeta)=1$. + +For any closed curve $\gamma$ in $U$, we have + +$$ +\int_\gamma f(\zeta) d\zeta = \int_a^b f(\gamma(t)) \gamma'(t) dt \approx \sum_{i=1}^n f(\gamma(t_i)) \gamma'(t_i) \Delta t_i +$$ + +#### Definition of a convex set + +A set $U$ is convex if for any two points $\zeta_1, \zeta_2 \in U$, the line segment $[\zeta_1, \zeta_2] \subset U$. + +Let $O(U)$ be the set of all holomorphic functions on $U$. + +#### Definition of primitive + +Say $f$ has a primitive on $U$. If there exists a holomorphic function $g$ on $U$ such that $g'(\zeta)=f(\zeta)$ for all $\zeta \in U$, then $g$ is called a primitive of $f$ on $U$. + +#### Cauchy's Theorem for a Convex region + +Cauchy's Theorem holds if $f$ has a primitive on a convex region $U$. + +$$ +\int_\gamma f(\zeta) d\zeta = \int_\gamma \left[\frac{d}{d\zeta}g(\zeta)\right] d\zeta = g(\zeta_1)-g(\zeta_2) +$$ + +Since the curve is closed, $\zeta_1=\zeta_2$, so $\int_\gamma f(\zeta) d\zeta = 0$. + +Proof: + +It is sufficient to prove that if $U$ is convex, $f$ is holomorphic on $U$, then $f=g'$ for some $g$ holomorphic on $U$. + +We pick a point $z_0\in U$ and define $g(\zeta)=\int_{[\zeta_0,\zeta]}f(\xi)d\xi$. + +We claim $g\in O(U)$ and $g'=f$. + +Let $\zeta_1$ close to $\zeta$, since $f$ is holomorphic on $U$, using the Goursat's theorem, we can find a triangle $T$ with $\xi\in T$ and $\zeta\in T$ and $T\subset U$. + +$$ +\begin{aligned} +0&=\int_{\zeta_0}^{\zeta}f(\xi)d\xi+\int_{\zeta}^{\zeta_1}f(\xi)d\xi\\ +&=g(\zeta)-g(\zeta_1)+\int_{\zeta}^{\zeta_1}f(\xi)d\xi+\int_{\zeta_1}^{\zeta_0}f(\xi)d\xi\\ +\frac{g(\zeta)-g(\zeta_1)}{\zeta-\zeta_1}&=-\frac{1}{\zeta-\zeta_1}\left(\int_{\zeta}^{\zeta_1}f(\xi)d\xi\right)\\ +\frac{g(\zeta_1)-g(\zeta_0)}{\zeta_1-\zeta_0}-f(\zeta_1)&=-\frac{1}{\zeta_1-\zeta_0}\left(\int_{\zeta}^{\zeta_1}f(\xi)d\xi\right)-f(\zeta_1)\\ +&=-\frac{1}{\zeta_1-\zeta_0}\left(\int_{\zeta}^{\zeta_1}f(\xi)-f(\zeta_1)d\xi\right)\\ +&=I +\end{aligned} +$$ + +Use the fact that $f$ is holomorphic on $U$, then $f$ is continuous on $U$, so $\lim_{\zeta\to\zeta_1}f(\zeta)=f(\zeta_1)$. + +There exists a $\delta>0$ such that $|\zeta-\zeta_1|<\delta$ implies $|f(\zeta)-f(\zeta_1)|<\epsilon$. + +So + +$$ +|I|\leq\frac{1}{\zeta_1-\zeta_0}\int_{\zeta}^{\zeta_1}|f(\xi)-f(\zeta_1)|d\xi<\frac{\epsilon}{\zeta_1-\zeta_0}\int_{\zeta}^{\zeta_1}d\xi=\epsilon +$$ + +So $I\to 0$ as $\zeta_1\to\zeta$. + +Therefore, $g'(\zeta_1)=f(\zeta_1)$ for all $\zeta_1\in U$. + +EOP \ No newline at end of file diff --git a/pages/Math416/_meta.js b/pages/Math416/_meta.js index c9e71fa..0e09d9b 100644 --- a/pages/Math416/_meta.js +++ b/pages/Math416/_meta.js @@ -14,4 +14,5 @@ export default { Math416_L9: "Complex Variables (Lecture 9)", Math416_L10: "Complex Variables (Lecture 10)", Math416_L11: "Complex Variables (Lecture 11)", + Math416_L12: "Complex Variables (Lecture 12)", }