updates
This commit is contained in:
@@ -10,7 +10,9 @@ $$
|
||||
|
||||
Adversary knows $c$, but nothing else.
|
||||
|
||||
### Known plaintext attack (KPA)
|
||||
### Attack models
|
||||
|
||||
#### Known plaintext attack (KPA)
|
||||
|
||||
Adversary has seen $(m_1,Enc_k(m_1)),(m_2,Enc_k(m_2)),\cdots,(m_q,Enc_k(m_q))$.
|
||||
|
||||
@@ -18,7 +20,7 @@ $m_1,\cdots,m_q$ are known to the adversary.
|
||||
|
||||
Given new $c=Enc_k(m)$, is previous knowledge helpful?
|
||||
|
||||
### Chosen plaintext attack (CPA)
|
||||
#### Chosen plaintext attack (CPA)
|
||||
|
||||
Adversary can choose $m_1,\cdots,m_q$ and obtain $Enc_k(m_1),\cdots,Enc_k(m_q)$.
|
||||
|
||||
@@ -32,35 +34,24 @@ So US use Axis: $Enc_k(AF)$ and ran out of supplies.
|
||||
|
||||
Then US know Japan will attack Midway.
|
||||
|
||||
### Chosen ciphertext attack (CCA)
|
||||
#### Chosen ciphertext attack (CCA)
|
||||
|
||||
Adversary can choose $c_1,\cdots,c_q$ and obtain $Dec_k(c_1),\cdots,Dec_k(c_q)$.
|
||||
|
||||
|
||||
#### Definition 168.1 (Secure private key encryption against attacks)
|
||||
|
||||
Capture these ideas with the adversary having oracle access.
|
||||
|
||||
$$
|
||||
\Pi=(Gen,Enc,Dec)
|
||||
$$
|
||||
Let $\Pi=(Gen,Enc,Dec)$ be a private key encryption scheme. Let a random variable $IND_b^{O_1,O_2}(\Pi,\mathcal{A},n)$ where $\mathcal{A}$ is an n.u.p.p.t. The security parameter is $n\in \mathbb{N}$, $b\in\{0,1\}$ denoting the real scheme or the adversary's challenge.
|
||||
|
||||
private key encryption scheme.
|
||||
|
||||
$$
|
||||
IND_b^{O_1,O_2}(\Pi,\mathcal{A},n)
|
||||
$$
|
||||
|
||||
where $O_1$ and $O_2$ are the round 1 and round 2 oracle access.
|
||||
|
||||
$b$ is zero or one denoting the real scheme or the adversary's challenge.
|
||||
|
||||
$n$ is the security parameter.
|
||||
|
||||
is the following experiment:
|
||||
The experiment is the following:
|
||||
|
||||
- Key $k\gets Gen(1^n)$
|
||||
- Adversary $\mathcal{A}^{O_1(k)}(1^n)$ queries oracles
|
||||
- $m_0,m_1\gets \mathcal{A}^{O_2(k)}(1^n)$
|
||||
- Adversary $\mathcal{A}^{O_1(k)}(1^n)$ queries oracle $O_1$
|
||||
- $m_0,m_1\gets \mathcal{A}^{O_1(k)}(1^n)$
|
||||
- $c\gets Enc_k(m_b)$
|
||||
- $\mathcal{A}^{O_2(c)}(1^n,c)$ queries oracles
|
||||
- $\mathcal{A}^{O_2(c)}(1^n,c)$ queries oracle $O_2$ to distinguish $c$ is encryption of $m_0$ or $m_1$
|
||||
- $\mathcal{A}$ outputs bit $b'$ which is either zero or one
|
||||
|
||||
$\Pi$ is CPA/CCA1/CCA2 secure if for all PPT adversaries $\mathcal{A}$,
|
||||
@@ -79,9 +70,75 @@ where $\approx$ is statistical indistinguishability.
|
||||
|
||||
Note that $Dec_k^*$ will not allowed to query decryption of a functioning ciphertext.
|
||||
|
||||
You can imagine the experiment is a class as follows:
|
||||
|
||||
```python
|
||||
n = 1024
|
||||
|
||||
@lru_cache(None)
|
||||
def oracle_1(m,key,**kwargs):
|
||||
"""
|
||||
Query oracle 1
|
||||
"""
|
||||
pass
|
||||
|
||||
@lru_cache(None)
|
||||
def oracle_2(c,key,**kwargs):
|
||||
"""
|
||||
Query oracle 2
|
||||
"""
|
||||
pass
|
||||
|
||||
class Experiment:
|
||||
def __init__(self, key, oracle_1, oracle_2):
|
||||
self.key = key
|
||||
self.oracle_1 = oracle_1
|
||||
self.oracle_2 = oracle_2
|
||||
|
||||
def sufficient_trial(self):
|
||||
pass
|
||||
|
||||
def generate_test_message(self):
|
||||
pass
|
||||
|
||||
def set_challenge(self, c):
|
||||
self.challenge = c
|
||||
|
||||
def query_1(self):
|
||||
while not self.sufficient_trial():
|
||||
self.oracle_1(m,self.key,**kwargs)
|
||||
|
||||
def challenge(self):
|
||||
"""
|
||||
Return m_0, m_1 for challenge
|
||||
"""
|
||||
m_0, m_1 = self.generate_test_message()
|
||||
self.m_0 = m_0
|
||||
self.m_1 = m_1
|
||||
return m_0, m_1
|
||||
|
||||
def query_2(self, c):
|
||||
while not self.sufficient_trial():
|
||||
self.oracle_2(c,self.key,**kwargs)
|
||||
|
||||
def output(self):
|
||||
return 0 if self.challenge==m_0 else 1
|
||||
|
||||
if __name__ == "__main__":
|
||||
key = random.randint(0, 2**n)
|
||||
exp = Experiment(key, oracle_1, oracle_2)
|
||||
exp.query_1()
|
||||
m_0, m_1 = exp.challenge()
|
||||
choice = random.choice([m_0, m_1])
|
||||
exp.set_challenge(choice)
|
||||
exp.query_2()
|
||||
b_prime = exp.output()
|
||||
print(f"b'={b_prime}, b={choice==m_0}")
|
||||
```
|
||||
|
||||
#### Theorem: Our mms private key encryption scheme is CPA, CCA1 secure.
|
||||
|
||||
Have a PRF family $\{f_k\}:\{0,1\}^|k|\to\{0,1\}^{|k|}$
|
||||
Have a PRF family $\{f_k\}:\{0,1\}^{|k|}\to\{0,1\}^{|k|}$
|
||||
|
||||
$Gen(1^n)$ outputs $k\in\{0,1\}^n$ and samples $f_k$ from the PRF family.
|
||||
|
||||
|
||||
Reference in New Issue
Block a user