diff --git a/pages/CSE559A/CSE559A_L14.md b/pages/CSE559A/CSE559A_L14.md index 57930f7..938cbc6 100644 --- a/pages/CSE559A/CSE559A_L14.md +++ b/pages/CSE559A/CSE559A_L14.md @@ -72,6 +72,4 @@ ROI alignment: - Align the proposal to the feature map. - Align the proposal to the feature map. -Use bounding box regression to refine the proposal. - - +Use bounding box regression to refine the proposal. \ No newline at end of file diff --git a/pages/CSE559A/CSE559A_L15.md b/pages/CSE559A/CSE559A_L15.md new file mode 100644 index 0000000..8599d5f --- /dev/null +++ b/pages/CSE559A/CSE559A_L15.md @@ -0,0 +1,31 @@ +# CSE559A Lecture 15 + +## Continue on object detection + +### Two strategies for object detection + +#### R-CNN: Region proposals + CNN features + +![R-CNN](https://notenextra.trance-0.com/CSE559A/R-CNN.png) + +#### Fast R-CNN: CNN features + RoI pooling + +![Fast R-CNN](https://notenextra.trance-0.com/CSE559A/Fast-R-CNN.png) + +Use bilinear interpolation to get the features of the proposal. + +#### Region of interest pooling + +![RoI pooling](https://notenextra.trance-0.com/CSE559A/RoI-pooling.png) + +Use backpropagation to get the gradient of the proposal. + +### New materials + +#### Faster R-CNN + +Use one CNN to generate region proposals. And use another CNN to classify the proposals. + + + + diff --git a/pages/CSE559A/_meta.js b/pages/CSE559A/_meta.js index 14575f5..8401059 100644 --- a/pages/CSE559A/_meta.js +++ b/pages/CSE559A/_meta.js @@ -17,4 +17,5 @@ export default { CSE559A_L12: "Computer Vision (Lecture 12)", CSE559A_L13: "Computer Vision (Lecture 13)", CSE559A_L14: "Computer Vision (Lecture 14)", + CSE559A_L15: "Computer Vision (Lecture 15)", } diff --git a/pages/Math4121/Math4121_L22.md b/pages/Math4121/Math4121_L22.md index 0b9f841..42f310b 100644 --- a/pages/Math4121/Math4121_L22.md +++ b/pages/Math4121/Math4121_L22.md @@ -2,8 +2,6 @@ ## Continue on Arzela-Osgood Theorem - - Proof: Part 2: Control the integral on $\mathcal{U}$ @@ -100,7 +98,7 @@ Part 2: If $f$ is pointwise discontinuous, then $\mathcal{D}$ is of first catego Let $P_k=\{x\in [a,b]: w(f;x)\geq \frac{1}{k}\}$, $\mathcal{D}=\bigcup_{k=1}^\infty P_k$. -Need to show that each $P_k$ is nowhere dense. (under the assumption that $\mathcal{C)$ is dense). +Need to show that each $P_k$ is nowhere dense. (under the assumption that $\mathcal{C}$ is dense). Let $I\subseteq [a,b]$ so $\exists c\in \mathcal{C}\cap I$. So by definition of $w(f;c)$, $\exists J\subseteq I$ and $c\in J$ such that $w(f;J)\leq \frac{1}{k}$ so for all $x\in J$, $w(f;x)\leq \frac{1}{k}$. so $J\subseteq P_k=\emptyset$. diff --git a/pages/Math4121/Math4121_L23.md b/pages/Math4121/Math4121_L23.md index 9ef05c6..5789b11 100644 --- a/pages/Math4121/Math4121_L23.md +++ b/pages/Math4121/Math4121_L23.md @@ -1 +1,139 @@ -# Lecture 23 \ No newline at end of file +# Math 4121 Lecture 23 + +## Chapter 5 Measure Theory + +### Weierstrass idea + +Define + +$$ +S_f(x) = \{(x,y)\in \mathbb{R}^2: 0\leq y\leq f(x)\} +$$ + +We take the outer content in $\mathbb{R}^2$ of $S_f(x)$ to be the area of the largest rectangle that can be inscribed in $S_f(x)$. + +$$ +(w)\int_a^b f(x) dx = c_e(S_f(x)) +$$ + +We can generalize this to higher dimensions. + +#### Definition volume of rectangle + +Let $R=I_1\times I_2\times \cdots \times I_n\in \mathbb{R}^n$ be a rectangle. + +The volume of $R$ is defined as + +$$ +\text{vol}(R) = \prod_{i=1}^n \ell(I_i) +$$ + +#### Definition of outer content + +For $S\subseteq \mathbb{R}^n$, we define the outer content of $S$ as + +$$ +c_e(S) = \inf_{\{R_j\}_{j=1}^N} \sum_{j=1}^N \text{vol}(R_j) +$$ + +where $S\subseteq \bigcup_{j=1}^N R_j$ and $R_j$ are rectangles. + +Note: $\overline{\int}f(x) dx=c_e(S_f(x))$ + +#### Definition of inner content + +For $S\subseteq \mathbb{R}^n$, we define the inner content of $S$ as + +$$ +c_i(S) = \sup_{\{R_j\}_{j=1}^N} \sum_{j=1}^N \text{vol}(R_j) +$$ + +where $R_j$ are disjoint rectangles $\in \mathbb{R}^n$ and $\bigcup_{j=1}^N R_j\subseteq S$. + +Note: $\underline{\int}f(x) dx=c_i(S_f(x))$ + +#### Definition of Jordan measurable set + +A set $S\subseteq \mathbb{R}^n$ is said to be _Jordan measurable_ if $c_e(S)=c_i(S)$. + +and we denote the common value **content** as $c_e(S)=c_i(S)=c(S)$. + +#### Definition of interior of a set + +The interior of a set $S\subseteq \mathbb{R}^n$ is defined as + +$$ +S^\circ = \{x\in \mathbb{R}^n: B_\delta(x)\subseteq S \text{ for some } \delta > 0\} +$$ + +_It is the largest open set contained in $S$._ + +#### Definition of closure of a set + +The closure of a set $S\subseteq \mathbb{R}^n$ is defined as + +$$ +\overline{S} = S\cup S' +$$ + +or equivalently, + +$$ +\overline{S} = \{x\in \mathbb{R}^n: B_\delta(x)\cap S\neq \emptyset \text{ for all } \delta > 0\} +$$ + +where $S'$ is the set of all limit points of $S$. + +_It is the smallest closed set containing $S$._ + +Homework problem: Complement of the closure of $S$ is the interior of the complement of $S$, i.e., + +$$ +(\overline{S})^c = (S^c)^\circ +$$ + +#### Definition of boundary of a set + +The boundary of a set $S\subseteq \mathbb{R}^n$ is defined as + +$$ +\partial S = \overline{S}\setminus S^\circ +$$ + +#### Proposition 5.1 (Criterion for Jordan measurability) + +Let $S\subseteq \mathbb{R}^n$ be a bounded set. Then + +$$ +c_e(S) = c_i(S)+c_e(\partial S) +$$ + +So $S$ is Jordan measurable if and only if $c_e(\partial S)=0$. + +Proof: + +Let $\epsilon > 0$, and $\{R_j\}_{j=1}^N$ be an open cover of $\partial S$. such that $\sum_{j=1}^N \text{vol}(R_j) < c_e(\partial S)+\frac{\epsilon}{2}$. + +We slightly enlarge each $R_j$ to $Q_j$ such that $R_j\subseteq Q_j$ and $\text{vol}(Q_j)\leq \text{vol}(R_j)+\frac{\epsilon}{2N}$. + +and $dis(R_j,Q_j^c)>\delta > 0$ + +If we could construct such $\{Q_j\}_{j=N+1}^M$ disjoint and + +$$ +\bigcup_{j=N+1}^M Q_j\subseteq S\subseteq \bigcup_{j=1}^M Q_j +$$ + +then we have + +$$ +c_e(S)\leq \sum_{j=1}^M \text{vol}(\partial S)+\epsilon +c_i(S) +$$ + +We can do this by constructing a set of square with side length $\eta$. We claim: + +If $\eta$ is small enough (depends on $\delta$), then $\mathcal{C}_\eta=\{Q\in K_\eta:Q\subset S\}$, $\mathcal{C}_\eta\cup \left(\bigcup_{j=1}^N Q_j\right)$ is a cover of $S$. + +Suppose $\exists x\in S$ but not in $\mathcal{C}_\eta$. Then $x$ is closed to $\partial S$ so in some $Q_j$. (This proof is not rigorous, but you get the idea. Also not clear in book actually.) + +EOP diff --git a/pages/Math416/Math416_L15.md b/pages/Math416/Math416_L15.md index e06caeb..89a9c43 100644 --- a/pages/Math416/Math416_L15.md +++ b/pages/Math416/Math416_L15.md @@ -34,7 +34,7 @@ Proof: Let $z_0\in G$. There exists a neighborhood $\overline{B_r(z_0)}\subset G$ of $z_0$ such that $\left(f_n\right)_{n\in\mathbb{N}}$ converges uniformly on $\overline{B_r(z_0)}$. -Let $C_r=partial B_r(z_0)$. +Let $C_r=\partial B_r(z_0)$. By Cauchy integral formula, we have @@ -42,7 +42,7 @@ $$ f_n(z_0) = \frac{1}{2\pi i}\int_{C_r}\frac{f_n(\zeta)}{\zeta-z_0}d\zeta $$ -$\forall z\in B_r(z_0)$, we have $\frac{f_n(w)}{w-\zeta}$ converges uniformly on $C_r$. +$\forall z\in B_r(z_0)$, we have $\frac{f(w)}{w-\zeta}$ converges uniformly on $C_r$. So $\lim_{n\to\infty}f_n(z_0) = f(z_0) = \frac{1}{2\pi i}\int_{C_r}\frac{f(w)}{w-z_0}dw$ diff --git a/pages/Math416/Math416_L16.md b/pages/Math416/Math416_L16.md new file mode 100644 index 0000000..e962473 --- /dev/null +++ b/pages/Math416/Math416_L16.md @@ -0,0 +1,163 @@ +# Math416 Lecture 16 + +## Answer checking for exam + +### Q1 + +Cauchy riemann equations: + +$$ +\frac{\partial u}{\partial x} = \frac{\partial v}{\partial y}\quad\text{and}\quad\frac{\partial u}{\partial y} = -\frac{\partial v}{\partial x} +$$ + +Liouville's Theorem: + +Any non-constant entire function is unbounded. + +So $\cos(z)$ is unbounded in $\mathbb{C}$. + +$$ +\text{Log}(-e^2) = \ln|-e^2| + i\arg(-e^2) = -2 + \pi i +$$ + +At any point $z_0\in \mathbb{C}\setminus\{0\}$, there is an open set $z_0\in U\subset \mathbb{C}$ and a branch of logarithm defined on $U$. + +### Q2 + +Power series expansion + +### Q3 + +limit superior + +### Q4 + +Bound integral + +### Q5 + +$f_n$ converges pointwise to $f$ on $U$ if $\forall z\in U$, $\forall \epsilon > 0$, $\exists N$ s.t. $\forall n\geq N$, $|f_n(z)-f(z)| < \epsilon$. + +$f_n$ converges uniformly to $f$ on $U$ if $\forall \epsilon > 0$, $\exists N$ s.t. $\forall n\geq N$, $\forall z\in U$, $|f_n(z)-f(z)| < \epsilon$. + +Show for $|z|<1$, $f_n(z)=z^n$ converges pointwise to $0$ but not uniformly to $0$. + +(a) pointwise convergence: + +$|z^n| = |z|^n < \epsilon$ if $n > \frac{\ln\epsilon}{\ln|z|}$. + +(b) uniform convergence: + +No matter how small $\epsilon$ is, there is always a $z$ s.t. $|z^n| > \epsilon$ for all $n$. + +## Continue from last lecture + +### Schwarz's Lemma + +Let $f$ be an holomorphic function that maps the unit disk $D(0,1)$ to itself and $f(0)=0$. Then $|f(z)|\leq |z|$ for all $z\in D(0,1)$ + +#### Schwarz-Pick's Lemma + +(see exercise 7.17.2) + +Let $f$ be an holomorphic function that maps the unit disk $D(0,1)$ to itself. Then $\forall z,w\in D(0,1)$, + +$$ +\left|\frac{f(z)-f(w)}{1-\overline{f(w)}f(z)}\right|\leq \left|\frac{z-w}{1-\overline{w}z}\right| +$$ + +> Recall the Möbius map +> +> $$\phi_\alpha(z) = \frac{z-\alpha}{1-\overline{\alpha}z}$$ +> +> is a homeomorphism of the unit disk. +> +> So we can use the Möbius to restate the Schwarz-Pick's Lemma as: +> +> $$|\phi_{f(w)}(f(z))|\leq |\phi_w(z)|$$ + +Suppose we defined $g=\phi_{f(w)}\circ f\circ \phi_{-w}$, then $g$ is a holomorphic function that maps the unit disk to itself and $g(0)=0$. + +By Schwarz's Lemma, let $z\in D(0,1)$, $|g(z)|\leq |z|$. + +$$ +|\phi_{f(w)}(f(\phi_{-w}(z)))|\leq |z| +$$ + +Let $\zeta=\phi_{-w}(z)$, then $\zeta=\frac{z+w}{1+\overline{w}z}\in D(0,1)$, so $|\zeta|=\phi_w(z)$. + +#### Extension of Schwarz-Pick's Lemma in hyperbolic metric + +Suppose we defined the distance on $\mathbb{C}$ as $d(z,w)=|\frac{z-w}{1-\overline{w}z}|$. + +We claim that this is a metric on $\mathbb{C}$. $\forall z,w,v\in \mathbb{C}$: + +(a) $d(z,w)=0$ if and only if $z=w$ and $d(z,w)> 0$ otherwise. + +(b) $d(z,w)=d(w,z)$. + +(c) $d(z,w)\leq d(z,v)+d(v,w)$. + +We call this metric the Pseudo hyperbolic metric. + +> Hyperbolic metric: +> +> $$ \text{Hypdist}(z,w)=\tanh^{-1}(d(z,w))$$ +> +> Where $d(z,w)=|\frac{z-w}{1-\overline{w}z}|$ + +So we can restate the Schwarz-Pick's Lemma as: + +$$ +d(f(z),f(w))\leq d(z,w) +$$ + +And in hyperbolic metric, it becomes: + +$$ +\text{Hypdist}(f(z),f(w))\leq \text{Hypdist}(z,w) +$$ + +Suppose the equality holds for Schwarz-Pick's Lemma, then $|g(z)|=\tau z$ where $|\tau|=1$. + +Computation ignored here. + +Then $f$ is a Möbius map that is automorphism of the unit disk. + +### Existence of harmonic conjugate + +Suppose $f=u+iv$ is holomorphic on a domain $U\subset \mathbb{C}$. Then $u=\text{Re}(f)$ is harmonic on $U$. That is $\Delta u=\frac{\partial^2 u}{\partial x^2}+\frac{\partial^2 u}{\partial y^2}=0$. + +#### Theorem 7.18 + +Let $u$ be a real harmonic function on a convex domain $G\subset \mathbb{C}$. Then there exists $g\in O(G)$ such that $\text{Re}(g)=u$. Moreover, $g$ is unique up to an additive imaginary constant. + +Proof: + +Existence next time. + +Uniqueness: + +Suppose $g,h\in O(G)$ s.t. $\text{Re}(g)=\text{Re}(h)=u$. + +$\text{Re}g=u=\text{Re}h$ on $G$. + +If we can show that $(g-h)'=0$ on $G$, then we win. + +Let $g=u+iv$, $h=u+iw$. + +By the Cauchy-Riemann equations, + +$$ +\begin{aligned} +\frac{\partial}{\partial x}(g-h)&=\frac{\partial}{\partial x}i(v-w)\\ +&=i\left(\frac{\partial u}{\partial y}-\frac{\partial u}{\partial y}\right)\\ +&=0 +\end{aligned} +$$ + +Suppose $G=\mathbb{C}\setminus\{0\}$, then $u=\ln|z|=\frac{1}{2}\ln(x^2+y^2)$, which is harmonic. + +Continue next time. + + diff --git a/pages/Math416/_meta.js b/pages/Math416/_meta.js index 4b4d3d8..f0b242f 100644 --- a/pages/Math416/_meta.js +++ b/pages/Math416/_meta.js @@ -19,4 +19,5 @@ export default { Math416_L13: "Complex Variables (Lecture 13)", Math416_L14: "Complex Variables (Lecture 14)", Math416_L15: "Complex Variables (Lecture 15)", + Math416_L16: "Complex Variables (Lecture 16)", }