This commit is contained in:
Trance-0
2025-09-03 11:54:32 -05:00
parent 16da530768
commit fb1350038e
2 changed files with 165 additions and 0 deletions

View File

@@ -0,0 +1,164 @@
# Math4201 Lecture 3
## Recall form last lecture
### Topological Spaces
#### Basis for a topology
Let $X$ be a set. A basis for a topology on $X$ is a collection $\mathcal{B}$ (elements of $\mathcal{B}$ are called basis elements) of subsets of $X$ such that:
1. $\forall x\in X$, $\exists B\in \mathcal{B}$ such that $x\in B$
2. $\forall B_1,B_2\in \mathcal{B}$, $\forall x\in B_1\cap B_2$, $\exists B_3\in \mathcal{B}$ such that $x\in B_3\subseteq B_1\cap B_2$
<details>
<summary>Example 1</summary>
Let $X=\mathbb{R}$ and $\mathcal{B}=\{(a,b)|a,b\in \mathbb{R},a<b\}$ (collection of all open intervals).
Check properties 1:
for any $x\in \mathbb{R}$, $\exists (x-1,x+1)\in \mathcal{B}$ such that $x\in (x-1,x+1)$
Check properties 2:
let $B_1=(a,b)$ and $B_2=(c,d)$ be two basis elements, and $x\in B_1\cap B_2=(\max(a,c),\min(b,d))\in \mathcal{B}$.
</details>
<details>
<summary>Example 2</summary>
Let $X=\mathbb{R}$ and $\mathcal{B}_{LL}=\{[a,b)|a,b\in \mathbb{R},a<b\}$ (collection of all open intervals).
Check properties 1:
for any $x\in \mathbb{R}$, $\exists [x,x+1)\in \mathcal{B}_{LL}$ such that $x\in [x,x+1)$
Check properties 2:
let $B_1=[a,b)$ and $B_2=[c,d)$ be two basis elements, and $x\in B_1\cap B_2=[max(a,c),min(b,d))\in \mathcal{B}_{LL}$.
</details>
Extend this to $\mathbb{R}^2$.
#### Definition for cartesian product
Let $X$ and $Y$ be sets. The cartesian product of $X$ and $Y$ is the set $X\times Y=\{(x,y)|x\in X,y\in Y\}$.
<details>
<summary>Example 3</summary>
Let $X=\mathbb{R}^2$ and $\mathcal{B}$ be the collection of rectangle of the form $(a,b)\times (c,d)$ where $a,b,c,d\in \mathbb{R}$ and $a<b,c<d$. (boundary is not included)
Check properties 1:
for any $(x,y)\in \mathbb{R}^2$, $\exists (x,y)\in \mathcal{B}$ such that $(x,y)\in (x,y)$
Check properties 2:
let $B_1=(a,b)\times (c,d)$ and $B_2=(e,f)\times (g,h)$ be two basis elements, and $(x,y)\in B_1\cap B_2=(max(a,e),min(b,f))\times (max(c,g),min(d,h))\in \mathcal{B}$.
</details>
<details>
<summary>Example 4</summary>
Let $X=\mathbb{R}^2$ and $\mathcal{B}$ be the collection of open disks.
Check properties 1:
for any $x\in \mathbb{R}^2$, $\exists B_1(x)\in \mathcal{B}$ such that $x\in B_1(x)$.
Check properties 2:
let $B_{r_1}(x)$ and $B_{r_2}(y)$ be two basis elements, for every $z\in B_{r_1}(x)\cap B_{r_2}(y)$, $\exists B_{r_3}(z)\in \mathcal{B}$ such that $z\in B_{r_3}(z)\subseteq B_{r_1}(x)\cap B_{r_2}(y)$.
(even $B_{r_1}(x)\cap B_{r_2}(y)\notin \mathcal{B}$)
</details>
#### Topology generated by a basis
Let $\mathcal{B}$ be a basis for a topology on $X$. The topology generated by $\mathcal{B}$, denoted by $\mathcal{T}_{\mathcal{B}}$.
$U\in \mathcal{T}_{\mathcal{B}}\iff \forall x\in U, \exists B\in \mathcal{B}$ such that $x\in B\subseteq U$
<details>
<summary>Proof</summary>
$\mathcal{T}_{\mathcal{B}}$ is a topology on $X$ because:
1. $\emptyset \in \mathcal{T}_{\mathcal{B}}$ because $\emptyset \in \mathcal{B}$. $X\in \mathcal{T}_{\mathcal{B}}$ because $\forall x\in X, \exists B\in \mathcal{B}$ such that $x\in B\subseteq X$ (by definition of basis (property 1)))
2. $\mathcal{T}_{\mathcal{B}}$ is closed under arbitrary unions.
Want to show $\{U_\alpha | U_\alpha\in \mathcal{T}_{\mathcal{B}}\}_{\alpha \in I}\implies \bigcup_{\alpha \in I} U_\alpha\in \mathcal{T}_{\mathcal{B}}$.
Because $\forall x\in \bigcup_{\alpha \in I} U_\alpha$, $\exists \alpha_0$ such that $x\in U_{\alpha_0}$. Since $U_{\alpha_0}\in \mathcal{T}_{\mathcal{B}}$, $\exists B\in \mathcal{B}$ such that $x\in B\subseteq U_{\alpha_0}\subseteq \bigcup_{\alpha \in I} U_\alpha$.
3. $\mathcal{T}_{\mathcal{B}}$ is closed under finite intersections.
Want to show $U_1,U_2,\ldots,U_n\in \mathcal{T}_{\mathcal{B}}\implies \bigcap_{i=1}^n U_i\in \mathcal{T}_{\mathcal{B}}$.
If $n=2$, since $\forall x\in U_1\cap U_2$, $x\in U_1$ and $x\in U_2$, $\exists B_1\in \mathcal{B}$ such that $x\in B_1\subseteq U_1$ and $\exists B_2\in \mathcal{B}$.
Applying the second property of basis, $\exists B_3\in \mathcal{B}$ such that $x\in B_3\subseteq B_1\cap B_2\subseteq U_1\cap U_2$.
By induction, we can show that $\bigcap_{i=1}^n U_i\in \mathcal{T}_{\mathcal{B}}$.
</details>
<details>
<summary>Example of topology generated by a basis</summary>
Let $X$ be arbitrary.
Let $\mathcal{B}=\{x|x\in X\}$ (collection of all singleton subsets of $X$).
Then $\mathcal{T}$ is the discrete topology.
</details>
#### Properties of basis in generated topology
**Observation 1**: Any $B\in \mathcal{B}$ is an open set in $\mathcal{T}_{\mathcal{B}}$.
By the defining property of basis, $\forall x\in B$, $\exists x\in B\subseteq B$.
**Observation 2**: For any collection $\{B_\alpha\}_{\alpha \in I}$, $\bigcup_{\alpha \in I} B_\alpha\in \mathcal{T}_{\mathcal{B}}$.
By observation 1, each $B_\alpha\in \mathcal{T}_{\mathcal{B}}$. Since $\mathcal{T}_{\mathcal{B}}$ is a topology, $\bigcup_{\alpha \in I} B_\alpha\in \mathcal{T}_{\mathcal{B}}$.
#### Lemma
Let $\mathcal{B}$ and $\mathcal{T}_{\mathcal{B}}$ be a basis and the topology generated by $\mathcal{B}$ on $X$. Then,
$U\in \mathcal{T}_{\mathcal{B}}\iff$ there are basis elements $\{B_\alpha\}_{\alpha \in I}$ such that $U=\bigcup_{\alpha \in I} B_\alpha$.
<details>
<summary>Proof</summary>
$(\Rightarrow)$
If $U\in \mathcal{T}_{\mathcal{B}}$, we want to show that $U$ is a union of basis elements.
For any $x\in U$, by the definition of $\mathcal{T}_{\mathcal{B}}$, there is a basis element $B_x$ such that $x\in B_x\subseteq U$.
So, $U\subseteq \bigcup_{x\in U} B_x$.
Since $\forall B_x\in \{B_x\}_{\alpha \in I}$, $B_x\subseteq U$, we have $U\supseteq\bigcup_{x\in U} B_x$.
So, $U=\bigcup_{x\in U} B_x$.
$(\Leftarrow)$
Applies observation 2.
</details>
> [!NOTE]
>
> A basis for a topology is like a basis for a vector space in the sense that any open set/vector can be represented in terms of basis elements.
>
> But unlike linear algebra, it's not true that any open set can be written as a union of basis element in a **unique** way.

View File

@@ -5,4 +5,5 @@ export default {
},
Math4201_L1: "Topology I (Lecture 1)",
Math4201_L2: "Topology I (Lecture 2)",
Math4201_L3: "Topology I (Lecture 3)",
}