update typo
This commit is contained in:
@@ -1,4 +1,4 @@
|
|||||||
# Math 4121 Lecture 1
|
# Math4121 Lecture 1
|
||||||
|
|
||||||
## Chapter 5: Differentiation
|
## Chapter 5: Differentiation
|
||||||
|
|
||||||
|
|||||||
@@ -1,4 +1,4 @@
|
|||||||
# Math 4121 Lecture 10
|
# Math4121 Lecture 10
|
||||||
|
|
||||||
## Recap
|
## Recap
|
||||||
|
|
||||||
|
|||||||
@@ -1,4 +1,4 @@
|
|||||||
# Math 4121 Lecture 12
|
# Math4121 Lecture 12
|
||||||
|
|
||||||
## Chapter 7: Uniform Convergence and Integrals
|
## Chapter 7: Uniform Convergence and Integrals
|
||||||
|
|
||||||
|
|||||||
@@ -1,4 +1,4 @@
|
|||||||
# Math 4121 Lecture 13
|
# Math4121 Lecture 13
|
||||||
|
|
||||||
## Hidden Chapter 1
|
## Hidden Chapter 1
|
||||||
|
|
||||||
|
|||||||
@@ -1,4 +1,4 @@
|
|||||||
# Math 4121 Lecture 14
|
# Math4121 Lecture 14
|
||||||
|
|
||||||
## Recap
|
## Recap
|
||||||
|
|
||||||
|
|||||||
@@ -1,4 +1,4 @@
|
|||||||
# Math 4121 Lecture 15
|
# Math4121 Lecture 15
|
||||||
|
|
||||||
## Continue on patches for Riemann integral
|
## Continue on patches for Riemann integral
|
||||||
|
|
||||||
|
|||||||
@@ -1,4 +1,4 @@
|
|||||||
# Math 4121 Lecture 16
|
# Math4121 Lecture 16
|
||||||
|
|
||||||
## Continue on Patches for Riemann Integrals
|
## Continue on Patches for Riemann Integrals
|
||||||
|
|
||||||
|
|||||||
@@ -1,4 +1,4 @@
|
|||||||
# Math 4121 Lecture 17
|
# Math4121 Lecture 17
|
||||||
|
|
||||||
## Continue on Last lecture
|
## Continue on Last lecture
|
||||||
|
|
||||||
|
|||||||
@@ -1,4 +1,4 @@
|
|||||||
# Math 4121 Lecture 18
|
# Math4121 Lecture 18
|
||||||
|
|
||||||
## Continue
|
## Continue
|
||||||
|
|
||||||
|
|||||||
@@ -1,4 +1,4 @@
|
|||||||
# Math 4121 Lecture 19
|
# Math4121 Lecture 19
|
||||||
|
|
||||||
## Continue on the "small set"
|
## Continue on the "small set"
|
||||||
|
|
||||||
|
|||||||
@@ -1,4 +1,4 @@
|
|||||||
# Math 4121 Lecture 2
|
# Math4121 Lecture 2
|
||||||
|
|
||||||
## Chapter 5: Differentiation
|
## Chapter 5: Differentiation
|
||||||
|
|
||||||
|
|||||||
@@ -1,4 +1,4 @@
|
|||||||
# Math 4121 Lecture 20
|
# Math4121 Lecture 20
|
||||||
|
|
||||||
## Continue on Chapter 4
|
## Continue on Chapter 4
|
||||||
|
|
||||||
|
|||||||
@@ -1,4 +1,4 @@
|
|||||||
# Math 4121 Lecture 3
|
# Math4121 Lecture 3
|
||||||
|
|
||||||
## Continue on Differentiation
|
## Continue on Differentiation
|
||||||
|
|
||||||
|
|||||||
@@ -1,4 +1,4 @@
|
|||||||
# Math 4121 Lecture 4
|
# Math4121 Lecture 4
|
||||||
|
|
||||||
## Chapter 5. Differentiation
|
## Chapter 5. Differentiation
|
||||||
|
|
||||||
|
|||||||
@@ -1,4 +1,4 @@
|
|||||||
# Math 4121 Lecture 5
|
# Math4121 Lecture 5
|
||||||
|
|
||||||
## Continue on differentiation
|
## Continue on differentiation
|
||||||
|
|
||||||
|
|||||||
@@ -1,4 +1,4 @@
|
|||||||
# Math 4121 Lecture 6
|
# Math4121 Lecture 6
|
||||||
|
|
||||||
## Chapter 6: Riemann-Stieltjes Integral
|
## Chapter 6: Riemann-Stieltjes Integral
|
||||||
|
|
||||||
|
|||||||
@@ -1,4 +1,4 @@
|
|||||||
# Math 4121 Lecture 7
|
# Math4121 Lecture 7
|
||||||
|
|
||||||
## Continue on Chapter 6
|
## Continue on Chapter 6
|
||||||
|
|
||||||
|
|||||||
@@ -1,4 +1,4 @@
|
|||||||
# Math 4121 Lecture 8
|
# Math4121 Lecture 8
|
||||||
|
|
||||||
## Continue on Riemann-Stieltjes Integral
|
## Continue on Riemann-Stieltjes Integral
|
||||||
|
|
||||||
|
|||||||
@@ -1,4 +1,4 @@
|
|||||||
# Math 4121 Lecture 9
|
# Math4121 Lecture 9
|
||||||
|
|
||||||
Exam next week.
|
Exam next week.
|
||||||
|
|
||||||
|
|||||||
@@ -1,4 +1,4 @@
|
|||||||
# Math 4121
|
# Math4121
|
||||||
|
|
||||||
Riemann integration; measurable functions; Measures; the Lebesgue integral; integrable functions; $L^p$ spaces.
|
Riemann integration; measurable functions; Measures; the Lebesgue integral; integrable functions; $L^p$ spaces.
|
||||||
|
|
||||||
|
|||||||
3
pages/Math416/Exam_reviews/Math416_E1.md
Normal file
3
pages/Math416/Exam_reviews/Math416_E1.md
Normal file
@@ -0,0 +1,3 @@
|
|||||||
|
# Math 416 Midterm 1 Review
|
||||||
|
|
||||||
|
|
||||||
@@ -61,7 +61,7 @@ $$
|
|||||||
\end{aligned}
|
\end{aligned}
|
||||||
$$
|
$$
|
||||||
|
|
||||||
Use the fact that $f$ is holomorphic on $U$, then $f$ is continuous on $U$, so $\lim_{z\toz_1}f(z)=f(z_1)$.
|
Use the fact that $f$ is holomorphic on $U$, then $f$ is continuous on $U$, so $\lim_{z\to z_1}f(z)=f(z_1)$.
|
||||||
|
|
||||||
There exists a $\delta>0$ such that $|z-z_1|<\delta$ implies $|f(z)-f(z_1)|<\epsilon$.
|
There exists a $\delta>0$ such that $|z-z_1|<\delta$ implies $|f(z)-f(z_1)|<\epsilon$.
|
||||||
|
|
||||||
@@ -71,7 +71,7 @@ $$
|
|||||||
|I|\leq\frac{1}{z_1-z_0}\int_{z}^{z_1}|f(\xi)-f(z_1)|d\xi<\frac{\epsilon}{z_1-z_0}\int_{z}^{z_1}d\xi=\epsilon
|
|I|\leq\frac{1}{z_1-z_0}\int_{z}^{z_1}|f(\xi)-f(z_1)|d\xi<\frac{\epsilon}{z_1-z_0}\int_{z}^{z_1}d\xi=\epsilon
|
||||||
$$
|
$$
|
||||||
|
|
||||||
So $I\to 0$ as $z_1\toz$.
|
So $I\to 0$ as $z_1\to z$.
|
||||||
|
|
||||||
Therefore, $g'(z_1)=f(z_1)$ for all $z_1\in U$.
|
Therefore, $g'(z_1)=f(z_1)$ for all $z_1\in U$.
|
||||||
|
|
||||||
|
|||||||
@@ -3,6 +3,7 @@ export default {
|
|||||||
"---": {
|
"---": {
|
||||||
type: 'separator'
|
type: 'separator'
|
||||||
},
|
},
|
||||||
|
Exam_reviews: "Exam reviews",
|
||||||
Math416_L1: "Complex Variables (Lecture 1)",
|
Math416_L1: "Complex Variables (Lecture 1)",
|
||||||
Math416_L2: "Complex Variables (Lecture 2)",
|
Math416_L2: "Complex Variables (Lecture 2)",
|
||||||
Math416_L3: "Complex Variables (Lecture 3)",
|
Math416_L3: "Complex Variables (Lecture 3)",
|
||||||
|
|||||||
Reference in New Issue
Block a user