diff --git a/pages/Math416/Math416_L4.md b/pages/Math416/Math416_L4.md index 0da316b..f6c3f67 100644 --- a/pages/Math416/Math416_L4.md +++ b/pages/Math416/Math416_L4.md @@ -59,9 +59,7 @@ $$ > A function $g(h)$ is $o(h)$ if $\lim_{h\to 0}\frac{g(h)}{h}=0$. > > -> $f$ is differentiable if and only if $f(z+h)=f(z)+f'(z)h+\frac{1}{2}h^2f''(z)+o(h^3)$ as $h\to 0$. - - +> $f$ is differentiable if and only if $f(z+h)=f(z)+f'(z)h+\frac{1}{2}h^2f''(z)+o(h^3)$ as $h\to 0$. Since $f$ is holomorphic at $\gamma(t_0)=\zeta_0$, we have