From ffcf2d90ebb3951df1090a73f2e70670c9514f47 Mon Sep 17 00:00:00 2001 From: Zheyuan Wu <60459821+Trance-0@users.noreply.github.com> Date: Wed, 24 Sep 2025 11:52:40 -0500 Subject: [PATCH] updates --- content/Math4201/Math4201_L13.md | 159 +++++++++++++++++++++++++++++++ content/Math4201/_meta.js | 1 + 2 files changed, 160 insertions(+) create mode 100644 content/Math4201/Math4201_L13.md diff --git a/content/Math4201/Math4201_L13.md b/content/Math4201/Math4201_L13.md new file mode 100644 index 0000000..026465e --- /dev/null +++ b/content/Math4201/Math4201_L13.md @@ -0,0 +1,159 @@ +# Math4201 Topology I (Lecture 13) + +## Metic spaces + +### Three different metrics on $\mathbb{R}^n$ + +Euclidean metric: + +$$ +d(x,y)=\sqrt{\sum_{i=1}^n (x_i-y_i)^2} +$$ + +Square metric: + +$$ +d(x,y)=\max_{i=1}^n |x_i-y_i| +$$ + +Manhattan metric: + +$$ +d(x,y)=\sum_{i=1}^n |x_i-y_i| +$$ + +So to prove our proposition, we need to show that any pair of metrics $d$ and $d'$ with basis generated by balls defined + +$$ +\mathcal{B}=\{B_r^{(d)}(x)|x\in X,r>0,r\in \mathbb{R}\} +$$ + +and + +$$ +\mathcal{B}'=\{B_r^{(d')}(x)|x\in X,r>0,r\in \mathbb{R}\} +$$ + +are equivalent. + +#### Proposition: The metrics induce the same topology on $\mathbb{R}^n$ + +The three metrics induce the same topology on $\mathbb{R}^n$, and it's the standard topology. + +#### Lemma of equivalent topologies + +If $\mathcal{T}$ and $\mathcal{T}'$ are two topologies on $X$, we say $\mathcal{T}$ and $\mathcal{T}'$ are equivalent to each other if and only if the following two conditions are satisfied: + +1. $\forall B_1\in \mathcal{T}, \exists B_2\in \mathcal{T}'$ such that $\forall x\in B_1, \exists x\in B_2\subseteq B_1$. +2. $\forall B_2\in \mathcal{T}', \exists B_1\in \mathcal{T}$ such that $\forall x\in B_2, \exists x\in B_1\subseteq B_2$. + +#### Lemma of equivalent metrics + +Let $d$ and $d'$ be two metrics on $X$. If the following holds, then the metric topology associated to $d$ and $d'$ are equivalent. + +1. $\forall x\in X, \forall \delta>0, \exists \epsilon>0$ such that $B_\delta(x)\subseteq B_\epsilon(x)$ +2. $\forall x\in X, \forall \epsilon>0, \exists \delta>0$ such that $B_\epsilon(x)\subseteq B_\delta(x)$ + +
+Proof + +To apply the lemma, we try to compute the three metrics on $\mathbb{R}^n$. + +$u=(u_1,u_2,\dots,u_n), v=(v_1,v_2,\dots,v_n)\in \mathbb{R}^n$ + +For Euclidean metric: + +$$ +d(u,v)=\sqrt{\sum_{i=1}^n (u_i-v_i)^2} +$$ + +For square metric: + +$$ +\rho(u,v)=\max_{i=1}^n |u_i-v_i| +$$ + +For Manhattan metric: + +$$ +m(u,v)=\sum_{i=1}^n |u_i-v_i| +$$ + +**First** we will show that $d$ and $\rho$ are equivalent. + +Note that + +$$ +\max_{i=1}^n |u_i-v_i|\leq \sqrt{\sum_{i=1}^n (u_i-v_i)^2} +$$ + +So $\forall u\in B_r^{(d)}(x), d(u,v) imagine two square capped circle inside + +**Then we will show** that $\rho$ and $m$ are equivalent. + +Observing that + +$$ +\max_{i=1}^n |u_i-v_i|\leq \sum_{i=1}^n |u_i-v_i|\leq n\times \max_{i=1}^n |u_i-v_i| +$$ + +Then we have + +$$ +B_{r/n}^{(\rho)}(x)\subseteq B_r^{(m)}(x)\subseteq B_n^{(\rho)}(x) +$$ + +> imagine two square capped a diamonds inside + +**Finally**, we will show that the topology generated by the square metric is the same as the product topology on $\mathbb{R}^n$. + +Recall the basis for the product topology on $\mathbb{R}^n$ with standard topology. + +$$ +\mathcal{B}=\{(a_1,b_1)\times (a_2,b_2)\times \cdots \times (a_n,b_n)|a_i,b_i\in \mathbb{R},a_i + +#### Proposition of metric induced product topology + +Let $(X,d),(Y,d')$ be two metric spaces with metric topology $\mathcal{T},\mathcal{T}'$. On $X\times Y$, we can define a metric $\rho$ by $\rho((x,y),(x',y'))\coloneqq \max\{d(x,x'),d'(y,y')\}$, $(x,y),(x',y')\in X\times Y$. + +Then this metric topology on $X\times Y$ is the same as the product topology on $X\times Y$. + +> [!NOTE] +> +> Product of metrizable topological spaces is metrizable. + diff --git a/content/Math4201/_meta.js b/content/Math4201/_meta.js index baf4154..d236f84 100644 --- a/content/Math4201/_meta.js +++ b/content/Math4201/_meta.js @@ -15,4 +15,5 @@ export default { Math4201_L10: "Topology I (Lecture 10)", Math4201_L11: "Topology I (Lecture 11)", Math4201_L12: "Topology I (Lecture 12)", + Math4201_L13: "Topology I (Lecture 13)", }