# Node 1 _all the materials are recovered after the end of the course. I cannot split my mind away from those materials._ ## Recap on familiar ideas ### Group A group is a set $G$ with a binary operation $\cdot$ that satisfies the following properties: 1. **Closure**: For all $a, b \in G$, the result of the operation $a \cdot b$ is also in $G$. 2. **Associativity**: For all $a, b, c \in G$, $(a \cdot b) \cdot c = a \cdot (b \cdot c)$. 3. **Identity**: There exists an element $e \in G$ such that for all $a \in G$, $e \cdot a = a \cdot e = a$. 4. **Inverses**: For each $a \in G$, there exists an element $b \in G$ such that $a \cdot b = b \cdot a = e$. ### Ring A ring is a set $R$ with two binary operations, addition and multiplication, that satisfies the following properties: 1. **Additive Closure**: For all $a, b \in R$, the result of the addition $a + b$ is also in $R$. 2. **Additive Associativity**: For all $a, b, c \in R$, $(a + b) + c = a + (b + c)$. 3. **Additive Identity**: There exists an element $0 \in R$ such that for all $a \in R$, $0 + a = a + 0 = a$. 4. **Additive Inverses**: For each $a \in R$, there exists an element $-a \in R$ such that $a + (-a) = (-a) + a = 0$. 5. **Multiplicative Closure**: For all $a, b \in R$, the result of the multiplication $a \cdot b$ is also in $R$. 6. **Multiplicative Associativity**: For all $a, b, c \in R$, $(a \cdot b) \cdot c = a \cdot (b \cdot c)$. Others not shown since you don't need too much. ## Symmetric Group ### Definition The symmetric group $S_n$ is the group of all permutations of $n$ elements. Or in other words, the group of all bijections from a set of $n$ elements to itself. Example: $$ e=1,2,3\\ (12)=2,1,3\\ (13)=3,2,1\\ (23)=1,3,2\\ (123)=3,1,2\\ (132)=2,3,1 $$ $(12)$ means that $1\to 2, 2\to 1, 3\to 3$ we follows the cyclic order for the elements in the set. $S_3 = \{e, (12), (13), (23), (123), (132)\}$ The multiplication table of $S_3$ is: |Element|e|(12)|(13)|(23)|(123)|(132)| |---|---|---|---|---|---|---| |e|e|(12)|(13)|(23)|(123)|(132)| |(12)|(12)|e|(123)|(13)|(23)|(132)| |(13)|(13)|(132)|e|(12)|(23)|(123)| |(23)|(23)|(123)|(132)|e|(12)|(13)| |(123)|(123)|(13)|(23)|(132)|e|(12)| |(132)|(132)|(23)|(12)|(123)|(13)|e| ## Functions defined on $S_n$ ### Symmetric Generating Set