# Lecture 13 ## Review Consider the metric space $X=\mathbb{R}$ (with the usual metric $d(x,y)=|x-y|$). Let $E=(0,1)$. 1. Find several examples of sets $Y\subset \mathbb{R}$ such that $E\subset Y$ and $E$ is closed in $Y$. Example: 1. $Y=E$, $E$ is closed in $Y$. We can prove this using normal ways, or **Theorem 2.23** $E$ is closed in $Y\iff E^c$ is open in $Y$ $Y\iff E^c=\phi$ and it's open. 2. $Y=\mathbb{R}\backslash\{0,1\}$ $Y\backslash E=(-\infty,0)\cup (1,\infty)$ **Theorem 2.30** $E\subset Y\subset X$, $E$ is open in $Y\iff$ $\exists G$ open in $X$ such that $G\cap Y=E$ $G\cap Y=Y\backslash E$ And we know $Y\backslash E$ is open in $Y$. By **Theorem 2.23** $E$ is closed in $Y$. 2. If $Y$ is as in part 1, we can conclude that $E$ is closed and bounded in $y$. Part of **Theorem 2.41** says: "If a set is closed and bounded, then it is compact." Why doesn't that theorem apply here. The set is not closed in $\mathbb{R}^k$. ## New stuffs ### Connected sets #### Definition 2.45 $A,B\subset X$, we say $A$ and $B$ are separated in $X$ if $A\cup \overline{B}=\phi$ and $\overline{A}\cup B=\phi$ - $E\subset X$ **disconnected** in $X$ if $\exists$ nonempty separated $A,B\subset X$ such that $E=A\cup B$ - $E\subset X$ is **connected** in $X$ if it is not disconnected. Example 2.46 $(0,1),(1,2)$ are separated [so $(0,1)\cup (1,2)$ is disconnected] $[0,1],(1,2)$ are not separated [so $[0,1]\cup (1,2)=\{1\}$] So this doesn't tell us where $[0,1]\cup (1,2)$ is connected or not. #### Theorem 2.47 Suppose $E\subset \mathbb{R}$ $E$ is connected $\iff \forall (x,y,z)$ with $x,y\in E,x0$ such that $(w-r,w+r)\cap B=\phi$. Let $z=w+\frac{r}{2}$, then $x,y,z$ satisfy the desired properties. QED ## Chapter 3: Numerical Sequences and Series ### Numerical Sequences #### Notations Rudin use $\{p_n\}$ to denote a sequence $p_1,p_2$. To avoid confusion with sets, we use $(p_n)_{n=1}^\infty$ or $(p_n)$ #### Definition 3.1 Let $(X,d)$ be a metric space. Let $(p_n)$ be a sequence in $X$. Let $p\in X$. We say $(p_x)$ **converges** to $p$ if $\forall \epsilon>0,\exists N\in\mathbb{N}$ such that $\forall n\geq N$, $d(p_n,p)<\epsilon$. ($p_n\in B_\epsilon (p)$) Notation $\lim_{n\to \infty} p_n=p$, $p_n\to p$ We say $(p_n)$ converges if $\exists p\in X$ such that $p_n\to p$. i.e. $\exists p\in X$ such that $\forall\epsilon>0,\exists N\in\mathbb{N}$ such that $\forall n\geq N,d(p_n,p)<\epsilon$ We say $(p_n)$ **diverges** if $(p_n)$ doesn't converge. i.e. $\forall p\in X$, $p_n\cancel{\to} p$ i.e. $\forall p\in X$ such that $\exists \epsilon>0,\forall N\in\mathbb{N}$ such that $\exists n\geq N,d(p_n,p)\geq\epsilon$ #### Definition 3.2 We say a sequence $(p_n)$ is bounded if $\exists x\in X$, $\forall r>0$ such that $\forall n\in \mathbb{N},p_n\in B_r(x)$ Example: $X=\mathbb{C}$, $s_n=\frac{1}{n}$ Then $s_n\to 0$ i.e. $\forall \epsilon>0 \exists N\in \mathbb{N}$ such that $\forall n\geq N$, $|s_n-0|<\epsilon$. Proof: Let $\epsilon >0$ (arbitrary) Let $N\in \mathbb{N}$ be greater than $\frac{1}{\epsilon}$ (by Archimedean property) e.g. $N=\frac{1}{\epsilon}+1$ (we choose $N$) Let $n\geq N$ (arbitrary) Then $|s_n-q|=\frac{1}{n}\leq \frac{1}{N}\leq \epsilon$ QED