# Lecture 14 ## Review Consider the following statement: If sequence $(p_n)$ converges, then its bounded. 1. Will the proof involve an arbitrary $\epsilon>0$ (one that you, the prover, do nto get to choose) or a specific $\epsilon>0$ (on that you can choose) We can choose, for example $\epsilon=1$. 2. Give a proof of the statement. ## Continue on sequence ### Convergence #### Theorem 3.2(c) $(p_n)$ converges $\implies(p_n)$ is bounded. Proof: Suppose $(p_n)$ converges, then $\exists p\in X$ such that $p_n\to p$. Let $\epsilon=1$, then $\exists N\in \mathbb{N}$ such that $\forall n\geq N,d(p_n,p)<1$. Let $r=1+max\{1,d(p_1,p),d(p_2,p),\dots,d(p_{N-1},p)\}$. Then $\forall n\in \mathbb{N}, d(p_n,p)\leq r$. #### Theorem 3.2 Let $(p_n)$ be a sequence in $(X,d)$ (a) $p_n\to p\iff \forall r>0,\{n\in \mathbb{N},p_n\notin B_r(p)\}$ is finite (b) $p_n\to p; p_n\to p'\implies p=p'$ (converging point is unique) (c) $(p_n)$ converges $\implies(p_n)$ is bounded. (d) If $E\subset X$ and $p\in \overline{E}$, then $\exist (p_n)\in E$ such that $p_n\to p$. Proof: (a) We need to show: $\forall \epsilon>0 \in N$, $\forall n\geq N,d(p_n,p)<\epsilon$ if and only if $\forall r>0, \{n\in \mathbb{N}:p\notin B_r(p)\}$ is finite. $\implies$ Suppose $\forall \epsilon>0 \in N$, $\forall n\geq N,d(p_n,p)<\epsilon$. **We start with arbitrary $r>0$.** and choose $\epsilon=n$ $\exists N$ such that $\forall n\geq \mathbb{N},d(p_n,p)0, \{n\in \mathbb{N}:p\notin B_r(p)\}$ is finite. Choosing $r=\epsilon$. We choose $r=\epsilon$. $\{n\in \mathbb{N}:p\notin B_\epsilon(p)\}<\{1,2,\dots,N-1\}$. Let $N=1+max\{n\in \mathbb{N},p_n\notin B_\epsilon(p)\}$ Then $\forall n\geq \mathbb{N},p_n\leq B_\epsilon(p)$ (b) We'll prove $\forall \epsilon>0,d(p,p')<2\epsilon$ to prove it, let $\epsilon >0$. Then $p_n\to p\implies \exists N$ such that $\forall n\geq \mathbb{N},d(p_n,p)<\epsilon$ $p_n\to p'\implies \exists N'$ such that $\forall n\geq \mathbb{N},d(p_n,p')<\epsilon$ Let $n_0=max\{N,N'\}$, then $$ d(p,p')\leq d(p_n,p_{n_0})+d(p_{n_0},p')<2\epsilon $$ And $\forall \epsilon>0,d(p,p')<2\epsilon\implies d(p,p')=0$. So $p=p'$ > Remark: We can also prove this with contradiction. Idea $p\neq p'\implies d(p,p')>0$, let $\epsilon=\frac{1}{2}d(p,q')\dots$ (d) Suppose $p\in \overline{E}$. Then $\forall n\in \mathbb{N}, B_{\frac{1}{n}}(p)\cap E\neq \phi$. So $\forall n\in \mathbb{N}$, $\exists p_n\in B_{\frac{1}{n}}(p)\cap E$. We'll show $p_n\to p$. Let $\epsilon>0$. Choose $N\in \mathbb{N}$ such that $N>\frac{1}{\epsilon}$. Then if $n\geq N$, $d(p_n,p)<\frac{1}{n}\leq \frac{1}{N}\leq \epsilon$ QED #### Theorem 3.3 Let $(s_n), (t_n)$ be sequence in $\mathbb{C}$. Suppose $s_n\to s,t_n\to t$ (a) $s_n+t_n\to s+t$ (b) $cs_n\to cs,c+s_n\to c+s$ (c) $s_nt_n\to st$ (d) If $\forall n\in \mathbb{N},s_n\neq 0,s\neq 0$, then $\frac{1}{s_n}\to \frac{1}{s}$ Proof: (a) We want to prove $\forall \epsilon>0, \exists N$ such that $\forall n\geq N, |(s_n+t_n)-(s+t)|<\epsilon$ Let $\epsilon >0$ $s_n\to s\implies \exist N_s$ such that $\forall n\geq N_s,|s_n-s|<\frac{\epsilon}{2}$ $t_n\to t\implies \exist N_t$ such that $\forall n\geq N_t,|t_n-t|<\frac{\epsilon}{2}$ Let $N=\max\{N_t,N_s\}$, then if $n\geq N$, $$ \begin{aligned} |(s_n+t_n)-(s+t)|&=|(s_n+s)-(t_n-t)|\\ &\leq |s_n-s|+|t_n-t|\\ &< \frac{\epsilon}{2}+\frac{\epsilon}{2}\\ &<\epsilon \end{aligned} $$ (b) exercise (c) First we'll prove a special case. $$ s_n\to 0 \textup{ and }t_n\to 0\implies s_nt_n\to 0 $$ Suppose $s_n\to 0$ and $t_n\to 0$. Let $\epsilon >0$ $s_n\to 0\implies \exist N_s$ such that $\forall n\geq N_s,|s_n-s|<\sqrt{\epsilon}$ $t_n\to 0\implies \exist N_t$ such that $\forall n\geq N_t,|t_n-t|<\sqrt{\epsilon}$ Let $N=\max\{N_t,N_s\}$, then if $n\geq N$, $$ |s_n t_n|< \sqrt{\epsilon}^2=\epsilon $$ Now we prove the general case. $$ s_n\to s \textup{ and }t_n\to t\implies s_nt_n\to st $$ Since $$ s_n t_n=(s_n-s)(t_n-t)+s(t_n-t)+t(s_n-s) $$ So $$ \lim_{n\to \infty}(s_nt_n-st)=\lim_{n\to \infty}(s_n-s)(t_n-t)+\lim_{n\to \infty}s(t_n-t)+\lim_{n\to \infty}t(s_n-s) $$ $\lim_{n\to \infty}(s_n-s)(t_n-t)=0$ by special case $\lim_{n\to \infty}s(t_n-t)=0$ by (b) $\lim_{n\to \infty}t(s_n-s)=0$ by (b) Thought process for (d) $$ \left|\frac{1}{s_n}-\frac{1}{s}\right|=\frac{|s_n-s|}{|s_n||s|}< \epsilon $$ If $n$ is large enough, then...