# Lecture 15 ## Review Let $(a_n)_{n=1}^\infty$ and $(b_n)_{n=1}^\infty$ be sequence in $\mathbb{R}$. Let $x_n=(a_n,b_n)\in \mathbb{R}^2$, so $(x_n)_{n=1}^\infty$ be a sequence in $\mathbb{R}^2$. Consider the following statement: $$ a_n\to a\textup{ and }\quad b_n\to b\iff x_n\to (a,b) $$ 1.Prove the $\impliedby$ direction. That means you should prove the two things: (a) If $x_n\to (a,b)$, then $a_n\to a$. (The proof of this begins: Suppose $x_n\to (a,b)$. Let $\epsilon>0$ be arbitrary. Then $\exists N$ such that $\forall n\geq N$) We begins (with the goal $\forall \epsilon>0,\exists N$ such that $\forall n\geq N,|a_n-a|<\epsilon$). Proof: Let $\epsilon>0$ be arbitrary, then $\exists N$ such that $\forall n\geq N,|a_n-a|<\epsilon$. Then if $n\geq N$, $|a_n-a|\leq \sqrt{|a_n-a|^2}\leq\sqrt{|a_n-a|^2+|b_n-b|^2}=|x_n-(a,b)|<\epsilon$. QED (b) If $x_n\to (a,b)$, then $b_n\to b$. This follows from the same argument from (a) 2. Prove the $\implies$ direction. Goal: $\forall \epsilon>0,\exists N$ such that $\forall n\geq N,|a_n-a|<\epsilon$. Proof: Let $\epsilon>0$ be arbitrary. Since $a_n\to a$, $\exists N_1$ such that $\forall n\geq N_1,|a_n-a|<\epsilon$. Since $b_n\to b$, $\exists N_2$ such that $\forall n\geq N_2,|b_n-b|<\epsilon$. Let $N=\max\{N_1,N_2\}$. Then if $n\geq N$, $|a_n-a|<\epsilon$ and $|b_n-b|<\sqrt{2}\epsilon$. **Same as last time, we can choose any smaller epsilon.** Since $a_n\to a$, $\exists N_1$ such that $\forall n\geq N_1,|a_n-a|<\frac{\epsilon}{\sqrt{2}}$. Since $b_n\to b$, $\exists N_2$ such that $\forall n\geq N_2,|b_n-b|<\frac{\epsilon}{\sqrt{2}}$. Let $N=\max\{N_1,N_2\}$. Then if $n\geq N$, $|a_n-a|<\epsilon$ and $|b_n-b|<\sqrt{\frac{\epsilon^2}{2}+\frac{\epsilon^2}{2}}=\epsilon$. QED ## New Materials Continue from **Theorem 3.3** Suppose $(s_n),(t_n)$ are sequences in $\mathbb{C}$ and $s_n\to s,t_n\to t$. Then (a) $s_n+t_n\to s+t$ (b) $cs_n\to cs$, $c+s_n\to c+s$ (c) $s_nt_n\to st$ (d) If $\forall n\in \mathbb{N},s_n\neq 0, s\neq 0$, then $\frac{1}{s_n}\to \frac{1}{s}$ Thought process for (d): $$ \left|\frac{1}{s_n}-\frac{1}{s}\right|=\left|\frac{s-s_n}{s_ns}\right|=\frac{|s-s_n|}{|s||s_n|} $$ We choose large enough $N$ such that $\forall n\geq N,|s_n-s|<\frac{|s|}{2}$. Then by triangle inequality, $|s_n|>\frac{|s|}{2}$. $$ \begin{aligned} |s|&=|s-s_n+s_n|\\ |s|&\leq |s-s_n|+|s_n|\\ |s|&<\frac{|s|}{2}+|s_n|\\ \frac{|s|}{2}&< |s_n| \end{aligned} $$ So $\frac{|s_n-s|}{|s||s_n|}<\frac{2|s_n-s|}{|s|^2}$. We choose $n$ large enough such that $$ \frac{2|s_n-s|}{|s|^2}<\epsilon $$ Then $|s_n-s|<\frac{\epsilon|s|^2}{2}$. Proof: Let $\epsilon>0$, since $s_n\to s$ $\exists N$ such that $\forall n\geq N,|s_n-s|<\frac{|s|}{2}$. $\exists N$ such that $\forall n\geq N,|s_n-s|<\frac{\epsilon|s|^2}{2}$. Let $N=\max\{N_1,N_2\}$. Then if $n\geq N$, $$ \left|\frac{1}{s_n}-\frac{1}{s}\right|=\frac{|s-s_n|}{|s||s_n|}<\frac{\frac{\epsilon|s|^2}{2}}{|s|^2}=\epsilon $$ QED ### Subsequences #### Definition 3.5 Given a sequence $(p_n)_{n=1}^\infty$, a sequence of $(n_i)_{i=1}^\infty$ is strictly increasing sequence in $\mathbb{N}$. i.e. $n_10, B_r(p)\cap E\backslash \{p\}\neq \phi$ - Choose $n_i$ such that $p_{n_i}\in B_i(p)$ - If $n_1,\dots, n_{i-1}$ have bee chosen, choose $n_i$ such that $n_i>n_{i-1}$ and $p_{n_i}\in B_{\frac{1}{i}}(p)$. Then $p_{n_i}\to p$ (b) Since $(p_n)$ is bounded , $\exists M$ such that $\forall n\in N$, $p_n\in \overline{B_M(0)}=\{y\in\mathbb{R}^k:|y|\leq M\}$ $\overline{B_M(0)}$ is a closed and bounded set in $\mathbb{R}^k$. Then by Theorem 2.41, $\overline{B_M(0)}$ is compact. By part (a), $(p_n)$ has a subsequence $(p_{n_i})$ has a subsequence that converges to $B_M(0)$. #### Theorem 3.37 Let $X$ be a metric space, $(p_n)$ is a sequence in $X$. Let $E^*=\{p\in X:\exists\textup{ subsequence }(p_{n_i})\textup{ such that }p_{n_i}\to p\}$. Then $E^*$ is closed in $X$. Example: $X=\mathbb{R}$ 1. $p_n=\frac{1}{n}$, $E^*=\{0\}$. (Specifically, if $p_n\to p$, then $E^*\to \{p\}$) 2. $p_n=\begin{cases}1,n\textup{ is odd}\\ 0,n\textup{ is even}\end{cases}$, $E^*=\{0,1\}$ 3. $p_n=n$, $E^*=\phi$ 4. $p_n=\sin nx$, $E^*=\{0,1\}$ 5. $p_n=\sin n$, $E^*=[0,1]$