# Lecture 18 ## Review Let $(s_n)$ be a sequence in $\mathbb{R}$, and suppose $\limsup_{n\to\infty} s_n=1$. Consider the following four sets: 1. $\{n\in\mathbb{N}:s_n>2\}$ 2. $\{n\in\mathbb{N}:s_n<2\}$ 3. $\{n\in\mathbb{N}:s_n>0\}$ 4. $\{n\in\mathbb{N}:s_n<0\}$ For each set, determine if the set $(1)$ must be infinite, or $(2)$ must be finite, or $(3)$ could be either finite or infinite, depending on the sequence $(s_n)$. If $\liminf_{n\to\infty} s_n=1$, then $\lim_{n\to\infty} \sup\{s_n,s_{n+1},s_{n+2},\dots\}=1$. So 1 must be finite, since if it is infinite, then $\limsup_{n\to\infty} s_n\geq 2$, which contradicts the given $\limsup_{n\to\infty} s_n=1$. 2 and 3 are infinite. since $\liminf_{n\to\infty} s_n=1$, there exists infinitely many $n$ such that $2>s_n>0$. 4 could be either finite or infinite. - $s_n=(-1)^n$ is example for 4 being infinite. - $s_n=1$ is example for 4 being finite. ## Continue on Limit Superior and Limit Inferior ### Limit Superior #### Definition 3.16 Let $(s_n)$ **be a sequence of real numbers**. $S^*$ is the largest possible value that a subsequence of $(s_n)$ can converge to. (Normally, we need to be careful about the definition of "largest possible value", but in this case it does exist by **Theorem 3.7**.) Abbott's definition: $S^*=\limsup_{n\to\infty}\{s_k:k\geq n\}$. #### Theorem 3.17 Let $(s_n)$ **be a sequence of real numbers**. $S^*$ is the unique number satisfying the following: 1. $\forall xS^*$, $\{n\in\mathbb{N}:s_n\geq x\}$ is finite. (same as saying $\exists N\in\mathbb{N}$ such that $n\geq N\implies s_n Normal squeeze theorem: If $s_n\leq t_n\leq u_n$ for all $n\in\mathbb{N}$, and $\lim_{n\to\infty} s_n=\lim_{n\to\infty} u_n=L$, then $\lim_{n\to\infty} t_n=L$. > > Proof: Exercise, hint: $u_n\to L\implies \limsup_{n\to\infty} u_n=\liminf_{n\to\infty} u_n=L$. #### Theorem 3.20 > Binomial theorem: $(1+x)^n=\sum_{k=0}^n\binom{n}{k}x^k$. Special sequences: (a) If $p>0$, then $\lim_{n\to\infty}\frac{1}{n^p}=0$. We want to find $\frac{1}{n^p}<\epsilon\iff n\geq\frac{1}{\epsilon^{1/p}}$. (b) If $p>0$, then $\lim_{n\to\infty}\sqrt[n]{p}=1$. We want to find $\sqrt[n]{p}-1<\epsilon\iff p<(1+\epsilon)^n$. > Bernoulli's inequality: for $\epsilon>0,n\in\mathbb{N}$, $(1+\epsilon)^n\geq 1+n\epsilon$. So it's enough to have $p<1+n\epsilon$ So we can choose $N>\frac{p-1}{\epsilon}$. Another way of writing this: Let $x_n=\sqrt[n]{p}-1$. Then $p=(1+x_n)^n\geq 1+nx_n$. So $0\leq x_n\leq\frac{p-1}{n}$. By the squeeze theorem, $x_n\to 0$.s (c) $\lim_{n\to\infty}\sqrt[n]{n}=1$. We want to find $\sqrt[n]{n}-1<\epsilon\iff n<(1+\epsilon)^n$. (this will not work for bernoulli's inequality) So it's enough to have $n<\frac{n(n-1)}{2}\epsilon^2\iff n>1+\frac{2}{\epsilon^2}$. So choose $N>1+\frac{2}{\epsilon^2}$. (d) If $p>0$ and $\alpha$ is real, then $\lim_{n\to\infty}\frac{n^\alpha}{(1+p)^n}=0$. With binomial theorem, $(1+p)^n\geq \binom{n}{k}p^k(k\leq n)$. $\binom{n}{k}=\frac{n(n-1)(n-2)\cdots(n-k+1)}{k!}$. If $n\geq 2k$, then $n-k+1\geq n-\frac{n}{2}+1\geq\frac{n}{2}$. So $\binom{n}{k}\geq\frac{(n/2)^k}{k!}$. Continue on next class.