# Lecture 20 ## Review Using the binomial theorem, prove that $$ \frac{1}{0!}+\frac{1}{1!}+\frac{1}{2!}+\cdots +\frac{1}{n!}\geq \left(1+\frac{1}{n}\right)^n $$ > Binomial theorem: $$(x+y)^n = \sum_{k=0}^{n} \binom{n}{k} x^{n-k} y^k$$ $$\binom{n}{k} = \frac{n!}{k!(n-k)!}$$ Proof: $$ \begin{aligned} \left(1+\frac{1}{n}\right)^n &= \sum_{k=0}^{n} \binom{n}{k} \left(1\right)^{n-k} \left(\frac{1}{n}\right)^k \\ &= \sum_{k=0}^{n} \binom{n}{k} \frac{1}{n^k} \\ &= \sum_{k=0}^{n} \frac{1}{k!} \prod_{j=1}^{k} \frac{n-j+1}{n} \\ \end{aligned} $$ Since $j\geq 1$, $\frac{n-j+1}{n} \leq1$. $$ \begin{aligned} &= \sum_{k=0}^{n} \frac{1}{k!} \prod_{j=1}^{k} \frac{n-j+1}{n} \\ &\geq \sum_{k=0}^{n} \frac{1}{k!} \\ \end{aligned} $$ ## New material ### Series #### Definition 3.30 $$ e=\sum_{n=0}^{\infty} \frac{1}{n!} $$ #### Lemma 3.30 $\sum_{n=0}^{\infty} \frac{1}{n!}$ converges. Proof: If $n\geq 2$, $$ \begin{aligned} \frac{1}{n!} &= \frac{1}{n} \cdot \frac{1}{(n-1)!} \\ &\leq \frac{1}{2} \cdot \frac{1}{2} \cdot \dots \cdot \frac{1}{2} \\ &= \frac{1}{2^{n-1}} \end{aligned} $$ $$ \frac{1}{n!} \leq \frac{1}{2^{n-1}} $$ So $\sum_{n=0}^{\infty} \frac{1}{n!}$ converges. #### Theorem 3.31 $$ \lim_{n\to\infty} \left(1+\frac{1}{n}\right)^n = e $$ Proof: Let $s_n = \sum_{k=0}^{n} \frac{1}{k!}$, let $t_n = \left(1+\frac{1}{n}\right)^n$. Goal: $\lim_{n\to\infty} s_n = \lim_{n\to\infty} t_n$. we already proved $\lim_{n\to\infty} s_n$ exists. But we don't know yet if $\lim_{n\to\infty} t_n$ exists. By warmup exercise, $\forall n\geq 0, t_n \leq s_n$. So if $\limsup_{n\to\infty} t_n \leq \limsup_{n\to\infty} s_n$, then $\lim_{n\to\infty} t_n$ exists and $\lim_{n\to\infty} t_n = \lim_{n\to\infty} s_n$. Now we will show $\limsup_{n\to\infty} t_n \geq e$. Ideas: (special case of the argument) If $n\geq 2$, then $$ \begin{aligned} t_n &= \sum_{k=0}^{n} \binom{n}{k} \left(\frac{1}{n}\right)^k \\ &\geq \binom{n}{0} + \binom{n}{1}\frac{1}{n} + \binom{n}{2}\left(\frac{1}{n}\right)^2 + \cdots + \binom{n}{n}\left(\frac{1}{n}\right)^n \\ &= 1 + \frac{n}{n} + \frac{n(n-1)}{2n^2} + \cdots + \frac{1}{n^n} \\ \end{aligned} $$ Let $n\to\infty$, then $$ \liminf_{n\to\infty} t_n \geq 1 + 1 + \frac{1}{2} + \frac{1}{3} + \cdots $$ Fix $m\geq 2$, for any $n\geq m$, $$ t_n \geq \frac{1}{0!} + \frac{1}{1!} + \frac{1}{2!}\frac{n}{n}\frac{n-1}{n}\cdots+\frac{1}{m!}\frac{n}{n}\frac{n-1}{n}\cdots\frac{n-m+1}{n} $$ Let $n\to\infty$, then $$ \liminf_{n\to\infty} t_n \geq \frac{1}{0!} + \frac{1}{1!} + \frac{1}{2!} + \cdots + \frac{1}{m!}=s_m $$ So $\liminf_{n\to\infty} t_n \geq \lim_{n\to\infty} s_n = e$. Therefore, $e\leq \liminf_{n\to\infty} t_n\leq \limsup_{n\to\infty} t_n\leq e$. So $\lim_{n\to\infty} t_n$ exists and $\lim_{n\to\infty} t_n = e$. QED #### Theorem 3.32 $e$ is irrational. Q: How good is the approximation is $s_n$ to $e$? A: Very good actually. $$ \begin{aligned} e-s_n &= \sum_{k=n+1}^{\infty} \frac{1}{k!} \\ &<\frac{1}{(n+1)!}\left(1+\frac{1}{n+1}+\frac{1}{(n+1)^2}+\cdots\right) \\ &=\frac{1}{(n+1)!}\sum_{k=0}^{\infty}\left(\frac{1}{n+1}\right)^k \\ &=\frac{1}{(n+1)!}\frac{1}{1-\frac{1}{n+1}} \\ &=\frac{1}{n!}\cdot\frac{1}{n} \\ &<\frac{1}{n!n} \end{aligned} $$ Proof: Suppose $e=\frac{p}{q}$ for some $p,q\in\mathbb{N}$. Observe that: $$ s_q=1+1+\frac{1}{2}+\cdots+\frac{1}{q!} $$ So $q! s_q$ is an integer. Since $e=\frac{p}{q}$, $q!e$ is an integer, $q!(e-s_q)$ is an integer. However, $$ 0 $$ \sqrt[n]{|a_n|} \leq \alpha \implies |a_n|\leq \alpha^n$$ Given a series $\sum_{n=0}^{\infty} a_n$, put $\alpha = \limsup_{n\to\infty} \sqrt[n]{|a_n|}$. Then (a) If $\alpha < 1$, then $\sum_{n=0}^{\infty} a_n$ converges. (b) If $\alpha > 1$, then $\sum_{n=0}^{\infty} a_n$ diverges. (c) If $\alpha = 1$, the test gives no information Proof: (a) Suppose $\alpha < 1$. Then $\exists \beta$ such that $\alpha < \beta < 1$. By **Theorem 3.17(b)**, $\forall n\geq N, \sqrt[n]{|a_n|} < \beta$. So $\forall n\geq N, |a_n| < \beta^n$. By comparison test, $\sum_{n=0}^{\infty} a_n$ converges. (b) Suppose $\alpha > 1$. By **Theorem 3.17(a)**, $\{n\in \mathbb{N}: \sqrt[n]{|a_n|} > 1\}$ is infinite. Thus $a_n\not\to 0$, $\sum_{n=0}^{\infty} a_n$ diverges. (c) $\sum_{n=0}^{\infty} \frac{1}{n}$ and $\sum_{n=0}^{\infty} \frac{1}{n^2}$ both have $\alpha = 1$. but the first diverges and the second converges. QED #### Theorem 3.34 (Ratio test) > $$ \left|\frac{a_{n+1}}{a_n}\right| \leq \alpha \implies |a_n|\leq \alpha^n$$ Given a series $\sum_{n=0}^{\infty} a_n$, $a_n\in\mathbb{C}\backslash\{0\}$. Then (a) If $\limsup_{n\to\infty} \left|\frac{a_{n+1}}{a_n}\right| < 1$, then $\sum_{n=0}^{\infty} a_n$ converges. (b) If $\left|\frac{a_{n+1}}{a_n}\right| \geq 1$ for all $n\geq n_0$ for some $n_0\in\mathbb{N}$, then $\sum_{n=0}^{\infty} a_n$ diverges. Remark: 1. If $\limsup_{n\to\infty} \left|\frac{a_{n+1}}{a_n}\right| = 1$, the test gives no information. 2. If $\limsup_{n\to\infty} \left|\frac{a_{n+1}}{a_n}\right| > 1$, the test gives no information. Proof: (b) $\forall n\geq n_0, \left|\frac{a_{n+1}}{a_n}\right| \geq 1$. So $a_{n_0}\not\to 0$, $\sum_{n=0}^{\infty} a_n$ diverges. (a) $\beta \in(\limsup_{n\to\infty} \left|\frac{a_{n+1}}{a_n}\right|, 1)$. By **Theorem 3.17(b)**, $\exists N$ such that $\forall n\geq N, \left|\frac{a_{n+1}}{a_n}\right| < \beta < 1$. So, $$ \begin{aligned} |a_N| &< \beta|a_N|\\ |a_{N+1}| &< \beta|a_{N+1}|\\ |a_{N+2}| &< \beta|a_{N+2}|\\ \end{aligned} $$ i.e. $\forall n\geq N, |a_n| < \beta^{n-N}|a_N|=\beta^n(\beta^{-N}|a_N|)$. Since $\sum_{n=N}^{\infty} \beta^n$ converges, by comparison test, $\sum_{n=0}^{\infty} a_n$ converges. QED We will skip **Theorem 3.37**. One implication is that if ratio test can be applied, then root test can be applied. ### Power series #### Definition 3.38 Let $(c_n)$ be a sequence of complex numbers. A power series is a series of the form $$ \sum_{n=0}^{\infty} c_n z^n $$ #### Theorem 3.39 Given a power series $\sum_{n=0}^{\infty} c_n z^n$, let $R=\frac{1}{\limsup_{n\to\infty} \sqrt[n]{|c_n|}}$. Then (a) The series converges absolutely for all $z\in\mathbb{C}$ with $|z| < R$. (b) The series diverges for all $z\in\mathbb{C}$ with $|z| > R$. (c) If $0\leq r < R$, then the series converges uniformly on the closed disk $\{z\in\mathbb{C}: |z|\leq r\}$. Proof: $$ \begin{aligned} \limsup_{n\to\infty} \sqrt[n]{|c_n z^n|} &= \limsup_{n\to\infty} \sqrt[n]{|c_n|} \cdot |z| \\ &= \frac{|z|}{R} \end{aligned} $$ By root test, the series converges absolutely for all $z\in\mathbb{C}$ with $|z| < R$. QED