# Lecture 21 ## Review Recall the alternating series test from calculus: "Suppose $(a_n)^\infty_{n=1}$ is a sequence satisfies the following conditions: 1. The sequence is nonnegative. (For all $n\in \mathbb{N}$, $a_n\geq 0$.) 2. The sequence is decreasing. ($a_1\geq a_2\geq a_3\geq \cdots$) 3. $\lim_{n\to\infty}a_n=0$. Then $\sum_{n=1}^\infty (-1)^{n+1}a_n$ converges." Exercise: Show that the statement above is false if we remove the second condition. [Hint: Use the fact that $\sum_{n=1}^\infty \frac{1}{n}$ diverges.] Let the sequence $a_n$ be defined as $a_n=\frac{1}{n},a_{n+1}=0$ for all $n\in \mathbb{N}$. This sequence satisfies the 1,3 but not the 2. And the harmonic series is not convergent. ## New Material ### Other tests for convergence of series Recall the integration by parts formula: Let $A(t),a(t),b(t)$ be functions of $t$ and $A'(t)=a(t)$. Then $$ \begin{aligned} \int_p^q a(t)b(t)\,dt&=\int_p^q b(t)A'(t)\,dt\\ &=\left.b(t)A(t)\right|_p^q-\int_p^q A(t)b'(t)\,dt \end{aligned} $$ #### Theorem 3.41 Summation by parts Let $a_n,b_n$ be sequences. Let $A(n)=\sum_{k=1}^n a_k$. ($A_{-1}=0$). If $0\leq p\leq q$, then $$ \sum_{n=p}^q a_nb_n=A_q b_q-A_{p-1}b_p-\sum_{n=p}^{q-1}A_n (b_n-b_{n+1}) $$ Proof: $$ \begin{aligned} \sum_{n=p}^q a_nb_n&=\sum_{n=p}^q (A_n-A_{n-1})b_n\\ &=\sum_{n=p}^q A_nb_n-\sum_{n=p}^q A_{n-1}b_n\\ &=\sum_{n=p}^q A_nb_n-\sum_{n=p-1}^{q-1}A_n b_{n+1}\\ &=A_qb_q-A_{p-1}b_p-\sum_{n=p}^{q-1} A_nb_n-\sum_{n=p}^{q-1} A_n b_{n+1}\\ &=A_qb_q-A_{p-1}b_p-\sum_{n=p}^{q-1} A_n (b_n-b_{n+1}) \end{aligned} $$ QED #### Theorem 3.42 (Dirichlet's test) Suppose (a) the partial sum $A_n$ of $\sum a_n$ form a bounded sequence. (b) $b_0\geq b_1\geq b_2\geq \cdots$ (non-increasing) (c) $\lim_{n\to\infty}b_n=0$. Then $\sum a_nb_n$ converges. Proof: By Cauchy criterion, it's enough to prove $\forall \epsilon >0, \exists N\in \mathbb{N}$ such that for all $p\geq q\geq N$, $$ \left|\sum_{n=p}^q a_nb_n\right|<\epsilon $$ By the partial sum $A_n$ of $\sum a_n$ form a bounded sequence. Let $\left|A_n\right|\leq M$ for all $n\in \mathbb{N}$. $$ \begin{aligned} \left|\sum_{n=p}^q a_nb_n\right|&=\left|A_qb_q-A_{p-1}b_p-\sum_{n=p}^{q-1}A_n (b_n-b_{n+1})\right|\\ &\leq |A_qb_q|+|A_{p-1}b_p|+\sum_{n=p}^{q-1}|A_n (b_n-b_{n+1})|\\ &\leq M|b_q|+M|b_p|+\sum_{n=p}^{q-1}M(b_n-b_{n+1})\\ &=M|b_q|+M|b_p|+M\sum_{n=p}^{q-1}(b_n-b_{n+1})\\ &=M|b_q|+M|b_p|+M(b_p-b_q)\\ &=2M|b_p| \end{aligned} $$ Then we let $\epsilon >0$ be given. Since $b_n\to 0$, there exists $N\in \mathbb{N}$ such that for all $n\geq N$, $|b_n|<\frac{\epsilon}{2M}$. If $q\geq p\geq N$, then $$ \left|\sum_{n=p}^q a_nb_n\right|\leq 2M|b_p|<\epsilon $$ So $\sum a_nb_n$ converges. QED #### Theorem 3.43 (Alternating series test) Let $(b_n)^\infty_{n=1}$ be a sequence such that: (a) $b_1\geq b_2\geq b_3\geq \cdots$ (non-increasing) (b) $\lim_{n\to\infty}b_n=0$ Then $\sum_{n=1}^\infty (-1)^{n+1}b_n$ converges. Proof: Let $a_n=(-1)^{n+1}$ $A_n=\sum_{k=1}^n a_k=1$ if $n$ is odd, $0$ if $n$ is even. So $|A_n|\leq 1$ for all $n\in \mathbb{N}$. By Theorem 3.42, $\sum_{n=1}^\infty a_n b_n$ converges. QED Example: Consider the power series $\sum_{n=0}^\infty \frac{z^n}{n}$. The radius of convergence is $1$. We claim that the series converges for all $z\in \mathbb{C}$ with $|z|=1$ and $z\neq 1$. #### Theorem 3.44 Abel's test Let $(b_n)^\infty_{n=0}$ be a sequence such that: (a) $b_0\geq b_1\geq b_2\geq \cdots$ (non-increasing) (b) $\lim_{n\to\infty}b_n=0$ Then if $|z|=1$ and $z\neq 1$, $\sum_{n=0}^\infty b_nz^n$ converges. Proof: Fix $z\in \mathbb{C}$ with $|z|=1$ and $z\neq 1$. Let $a_n=z^n$. Then $A_n=\sum_{k=0}^n z^k=\frac{1-z^{n+1}}{1-z}$._ $|A_n|\leq \frac{|1-z^{n+1}|}{|1-z|}$ for all $n\in \mathbb{N}$. By triangle inequality, $|1-z^{n+1}|\leq |1|+|z^{n+1}|=1+|z^{n+1}|$. And since $|z|=1$, $|z^{n+1}|=|z|^{n+1}=1$. So $|1-z^{n+1}|\leq 2$. So $|A_n|\leq \frac{2}{|1-z|}$ for all $n\in \mathbb{N}$. By Dirichlet's test, $\sum_{n=0}^\infty b_nz^n$ QED ### Absolute convergence The series $\sum_{n=0}^\infty a_n$ is said to **converge absolutely** if $\sum_{n=0}^\infty |a_n|$ converges. If $\sum_{n=0}^\infty a_n$ converges but does not converge absolutely, then $\sum_{n=0}^\infty a_n$ is said to **converge conditionally**. _Absolute convergence are nice but conditionally convergent series are not._ #### Theorem 3.45 (Absolute convergence) If $\sum_{n=0}^\infty a_n$ converges absolutely, then $\sum_{n=0}^\infty a_n$ converges. Proof: Use comparison test. $$ \sum_{n=0}^\infty |a_n|\geq \sum_{n=0}^\infty a_n $$ QED Rearrangement of series: Let $f:\mathbb{N}\to \mathbb{N}$ be a bijection. If $\sum_{n=0}^\infty a_n$ is a sequence and $b_n=a_{f(n)}$, then $(b_n)^\infty_{n=0}$ is a rearrangement of $(a_n)^\infty_{n=0}$. If $\sum_{n=0}^\infty a_n$ converges absolutely, then any rearrangement of $\sum_{n=0}^\infty a_n$ converges to the same sum. Example: $a_n=\frac{(-1)^{n+1}}{n}$. $b_n=a_{f(n)}$. |n|1|2|3|4|5|6|7|8|9| |:-:|:-:|:-:|:-:|:-:|:-:|:-:|:-:|:-:|:-:| |$f(n)$|1|2|4|3|6|8|5|10|12| |$b_n$|1|-1/2|-1/4|1/3|-1/6|-1/8|1/5|-1/10|-1/12| $$ \sum_{n=1}^\infty a_n=\frac{1}{1}-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+\cdots=\log 2 $$ $$ \begin{aligned} \sum_{n=1}^\infty b_n&=1-\frac{1}{2}-\frac{1}{4}+\frac{1}{3}-\frac{1}{6}-\frac{1}{8}+\frac{1}{5}-\frac{1}{10}-\frac{1}{12}+\cdots\\ &=\left(1-\frac{1}{2}\right)-\frac{1}{4}+\left(\frac{1}{3}-\frac{1}{6}\right)-\frac{1}{8}+\left(\frac{1}{5}-\frac{1}{10}\right)-\frac{1}{12}+\cdots\\ &=\frac{1}{2}-\frac{1}{4}+\frac{1}{6}-\frac{1}{8}+\frac{1}{10}-\frac{1}{12}+\cdots\\ &=\frac{1}{2}\left(1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+\cdots\right)\\ &=\frac{1}{2}\log 2 \end{aligned} $$ You cannot always rearrange series. But, if $\sum_{n=0}^\infty a_n$ converges absolutely, then you can rearrange the series. #### Theorem 3.55 Let $(a_n)^\infty_{n=0}$ be a sequence in $\mathbb{C}$ such that $\sum_{n=0}^\infty |a_n|$ converges absolutely. Then any rearrangement of $\sum_{n=0}^\infty a_n$ converges absolutely to the same sum. $$ \sum_{n=0}^\infty a_n=\sum_{n=0}^\infty a_{f(n)} $$ Ideas of proof: Let $f:\mathbb{N}\to \mathbb{N}$ be a bijection. and let $b_n=a_{f(n)}$. Let $s_n=\sum_{k=0}^n a_k,t_n=\sum_{k=0}^n b_k=\sum_{k=0}^n a_{f(k)}$. $I_n=\{1,2,\cdots,n\}$. $J_n=\{f(1),f(2),\cdots,f(n)\}$. $$ \begin{aligned} s_n-t_n&=\sum_{k=0}^n a_k-\sum_{k=0}^n a_{f(k)}\\ &=\sum_{k\in I_n} a_k-\sum_{k\in J_n} a_k\\ &= \sum_{k\in I_n\setminus J_n} a_k+\sum_{k\in J_n\setminus I_n} a_k\\ &\leq \sum_{k\in I_n\setminus J_n} |a_k|+\sum_{k\in J_n\setminus I_n} |a_k| \end{aligned} $$ Key observation: For every $n\in \mathbb{N}$, there exists a $p$ such that $\{1,2,\cdots,n\}\subset I_n\cap J_n$. Then $|s_n-t_n|\leq \sum_{k=N+1}^\infty |a_k|$. QED