# Math4121 Lecture 1 ## Chapter 5: Differentiation ### The derivative of a real function #### Definition 5.1 Let $f$ be a real-valued function on an interval $[a,b]$ ($f: [a,b] \to \mathbb{R}$). We say that $f$ is _differentiable_ at a point $x\in [a,b]$ if the limit $$ \lim_{t\to x} \frac{f(t)-f(x)}{t-x} $$ exists. Then we defined the derivative of $f$, $f'$, a function whose domain is the set of all $x\in [a,b]$ at which $f$ is differentiable, by $$ f'(x) = \lim_{t\to x} \frac{f(t)-f(x)}{t-x} $$ #### Theorem 5.2 Let $f:[a,b]\to \mathbb{R}$. If $f$ is differentiable at $x\in [a,b]$, then $f$ is continuous at $x$. Proof: > Recall [Definition 4.5](https://notenextra.trance-0.com/Math4111/Math4111_L22#definition-45) > > $f$ is continuous at $x$ if $\forall \epsilon > 0, \exists \delta > 0$ such that if $|t-x| < \delta$, then $|f(t)-f(x)| < \epsilon$. > > Whenever you see a limit, you should think of this definition. We need to show that $\lim_{t\to x} f(t) = f(x)$. Equivalently, we need to show that $$ \lim_{t\to x} (f(t)-f(x)) = 0 $$ So for $t\ne x$, since $f$ is differentiable at $x$, we have $$ \begin{aligned} \lim_{t\to x} (f(t)-f(x)) &= \lim_{t\to x} \left(\frac{f(t)-f(x)}{t-x}\right)(t-x) \\ &= \lim_{t\to x} \left(\frac{f(t)-f(x)}{t-x}\right) \lim_{t\to x} (t-x) \\ &= f'(x) \cdot 0 \\ &= 0 \end{aligned} $$ Therefore, differentiable is a stronger condition than continuous. > There exists some function that is continuous but not differentiable. > > For example, $f(x) = |x|$ is continuous at $x=0$, but not differentiable at $x=0$. > > We can see that the left-hand limit and the right-hand limit are not the same. > > $$ \lim_{t\to 0^-} \frac{|t|-|0|}{t-0} = -1 \quad \text{and} \quad \lim_{t\to 0^+} \frac{|t|-|0|}{t-0} = 1 $$ > > Therefore, the limit does not exist. for $f(x) = |x|$ at $x=0$. #### Theorem 5.3 Suppose $f$ is differentiable at $x\in [a,b]$ and $g$ is differentiable at a point $x\in [a,b]$. Then $f+g$, $fg$ and $f/g$ are differentiable at $x$, and (a) $(f+g)'(x) = f'(x) + g'(x)$ (b) $(fg)'(x) = f'(x)g(x) + f(x)g'(x)$ (c) $\left(\frac{f}{g}\right)'(x) = \frac{f'(x)g(x) - f(x)g'(x)}{g(x)^2}$, provided $g(x)\ne 0$ Proof: Since the limit of product is the product of the limits, we can use the definition of the derivative to prove the theorem. (a) $$ \begin{aligned} (f+g)'(x) &= \lim_{t\to x} \frac{(f+g)(t)-(f+g)(x)}{t-x} \\ &= \lim_{t\to x} \frac{f(t)-f(x)}{t-x} + \lim_{t\to x} \frac{g(t)-g(x)}{t-x} \\ &= f'(x) + g'(x) \end{aligned} $$ (b) Since $f$ is differentiable at $x$, we have $\lim_{t\to x} f(t) = f(x)$. $$ \begin{aligned} (fg)'(x) &= \lim_{t\to x} \left(\frac{f(t)g(t)-f(x)g(x)}{t-x}\right) \\ &= \lim_{t\to x} \left(f(t)\frac{g(t)-g(x)}{t-x} + g(x)\frac{f(t)-f(x)}{t-x}\right) \\ &= f(t) \lim_{t\to x} \frac{g(t)-g(x)}{t-x} + g(x) \lim_{t\to x} \frac{f(t)-f(x)}{t-x} \\ &= f(x)g'(x) + g(x)f'(x) \end{aligned} $$ (c) $$ \begin{aligned} \left(\frac{f}{g}\right)'(x) &= \lim_{t\to x}\left(\frac{f(t)g(x)}{g(t)g(x)} - \frac{f(x)g(x)}{g(t)g(x)}\right) \\ &= \frac{1}{g(t)g(x)}\left(\lim_{t\to x} (f(t)g(x)-f(x)g(t))\right) \\ \end{aligned} $$