# Math4121 Lecture 10 ## Recap ### Properties of Riemann-Stieltjes Integral #### Linearity (Theorem 6.12 (a)) If $f,g\in \mathscr{R}(\alpha)$ on $[a, b]\subset \mathbb{R},c,d\in \mathbb{R}$, then $cf+dg\in \mathscr{R}(\alpha)$ on $[a, b]$ and $$ \int_a^b (cf+dg)d\alpha = c\int_a^b f d\alpha + d\int_a^b g d\alpha $$ #### Composition (Theorem 6.11) Suppose $f\in \mathscr{R}(\alpha)$ on $[a, b]$, $m\leq f(x)\leq M$ for all $x\in [a, b]$, and $\phi$ is continuous on $[m, M]$, and let $h(x)=\phi(f(x))$ on $[a, b]$. Then $h\in \mathscr{R}(\alpha)$ on $[a, b]$. #### Monotonicity (Theorem 6.12 (b)) If $f,g\in \mathscr{R}(\alpha)$ on $[a, b]$, and $f(x)\leq g(x),\forall x\in [a, b]$, then $\int_a^b f d\alpha \leq \int_a^b g d\alpha$. ## Continue on Chapter 6 ### Properties of Integrable Functions #### Theorem 6.13 Suppose $f,g\in \mathscr{R}(\alpha)$ on $[a, b]$, and $c\in (a, b)$. Then (a) $fg\in \mathscr{R}(\alpha)$ on $[a, b]$. Proof: By linearity, $f+g,f-g\in \mathscr{R}(\alpha)$ on $[a, b]$. Moreover, let $\phi(x)=x^2$, which is continuous on $\mathbb{R}$. By **Theorem 6.11**, $f^2,g^2\in \mathscr{R}(\alpha)$ on $[a, b]$. By linearity, $fg=1/4((f+g)^2-(f-g)^2)\in \mathscr{R}(\alpha)$ on $[a, b]$. QED (b) $|f|\in \mathscr{R}(\alpha)$ on $[a, b]$, and $|\int_a^b f d\alpha|\leq \int_a^b |f| d\alpha$. Proof: Let $\phi(x)=|x|$, which is continuous on $\mathbb{R}$. By **Theorem 6.11**, $|f|\in \mathscr{R}(\alpha)$ on $[a, b]$. Let $c=-1$ or $c=1$. such that $c\int_a^b f d\alpha=| \int_a^b f d\alpha|$. By linearity, $c\int_a^b f d\alpha=\int_a^b cfd\alpha$. Since $cf\leq |f|$, by monotonicity, $|\int_a^b cfd\alpha|=\int_a^b cfd\alpha\leq \int_a^b |f| d\alpha$. QED ### Indicator Function #### Definition 6.14 The unit step function is defined as $$ I(x)=\begin{cases} 0, & x\le 0 \\ 1, & x>0 \end{cases} $$ #### Theorem 6.15 Let $a