# Lecture 11 ## Recap $$ I(x)=\begin{cases} 0 & x\leq 0 \\ 1 & x>0 \end{cases} $$ ## Continue on Chapter 6 ### The step function #### Theorem 6.16 If $\sum c_n$ converges and $\{s_n\}$ is a sequence of distinct elements of $(a,b)$, and $f$ is continuous on $[a,b]$, and $\alpha(x)=\sum_{n=1}^{\infty}c_nI(x-s_n)$, then $\int_a^bf \ d\alpha=\sum_{n=1}^{\infty}c_nf(s_n)$. Proof: For each $x$, $I(x-s_n)\leq 1$ so $\sum_{n=1}^{\infty}c_nI(x-s_n)\leq \sum_{n=1}^{\infty}c_n$ converges (by comparison test). Let $\epsilon>0$. We can find $N$ such that $\sum_{n=N+1}^{\infty}c_n<\epsilon$. (Recall that the series $\sum_{n=1}^{\infty}c_n$ converges if and only if $\lim_{N\to\infty}\sum_{n=1}^{N}c_n$ exists.) Set $\alpha_1(x)=\sum_{n=1}^{N}c_nI(x-s_n)$, and $\alpha_2(x)=\sum_{n=N+1}^{\infty}c_nI(x-s_n)$. Using the linearity of the integral, we have $$ \int_a^b f\ d\alpha_1= \sum_{n=1}^{N}c_n\int_a^b fd(I(x-s_n))= \sum_{n=1}^{N}c_nf(s_n) $$ On the other hand, with $M=\sup|f|$, $$ \left|\int_a^b f\ d\alpha_2\right|\leq \int_a^b |f|\ d\alpha_2\leq M\int_a^b \alpha_2\ dx=M\sum_{n=N+1}^{\infty}c_n(b-s_n)<\epsilon $$ So, $$ \begin{aligned} \left|\int_a^b f\ d\alpha-\sum_{n=1}^{\infty}c_nf(s_n)\right|&= \left|\int_a^b f\ d\alpha_2-\sum_{n=N+1}^{\infty}c_nf(s_n)\right|\\ &\leq |M\epsilon-\sum_{n=N+1}^{\infty}|c_n|M(b-s_n)|\\ &<2M\epsilon \end{aligned} $$ Since $\epsilon$ is arbitrary, we have $\int_a^b f\ d\alpha=\sum_{n=1}^{\infty}c_nf(s_n)$. ### Integration and differentiation #### Theorem 6.20 Fundamental theorem of calculus Let $f\in \mathscr{R}$ for $x\in [a,b]$. We define $F(x)=\int_a^x f(t)\ dt$. Then $F$ is continuous and if $f$ is continuous at $x_0\in [a,b]$, then $F$ is differentiable at $x_0$ and $F'(x_0)=f(x_0)$. Proof: Let $x0$. Then we can find $\delta>0$ such that $a0$ and $P=\{x_0,x_1,\cdots,x_n\}$ be a partition of $[a,b]$. By the mean value theorem, on each subinterval $[x_{i-1},x_i]$, there exists $t_i\in (x_{i-1},x_i)$ such that $$ F(x_i)-F(x_{i-1})=F'(t_i)(x_i-x_{i-1})=f(t_i)\Delta x_i $$ Since $m_i\leq f(t_i)\leq M_i$, notices that $\sum_{i=1}^n f(t_i)\Delta x_i=F(b)-F(a)$. So, $$ L(P,f)\leq F(b)-F(a)\leq U(P,f) $$ So, $f\in \mathscr{R}$ and $\int_a^b f(x)\ dx=F(b)-F(a)$. QED