# Math4121 Lecture 12 ## Chapter 7: Uniform Convergence and Integrals Our goal is to solve problems like this: Let $$ s_{n,m}=\frac{m}{m+n} $$ The different order of computation gives different results: $$ \lim_{n\to\infty}\lim_{m\to\infty}s_{n,m}=1 $$ $$ \lim_{m\to\infty}\lim_{n\to\infty}s_{n,m}=0 $$ We cannot always switch the order of limits. We cannot also do this on derivatives. ### Examples #### Example 7.4 $$ f_m(x)=\lim_{n\to\infty}cos(m!x\pi)^{2n} $$ If $cos(m!x\pi)^{2n}=\pm 1$, then $f_m(x)=1$. If not, then $|cos(m!x\pi)^{2n}|<1$. $$ f_m(x)=\begin{cases} 1 & \text{if } m!x\text{ is an integer} \\ 0 & \text{if } \text{otherwise} \end{cases} $$ This function "raise" the fractions with all denominators less than $m$. $$ \lim_{m\to\infty}f_m(x)= \begin{cases} 1 & \text{if } x\text{ is an rational number} \\ 0 & \text{if } \text{otherwise} \end{cases} $$ So this function is not Riemann integrable. (show in homework) But $$ g_{n,m}(x)=cos(m!x\pi)^{2n} $$ is continuous, and $$ \lim_{m\to\infty}\lim_{n\to\infty}g_{n,m}(x)=f(x) $$ So the function is not Riemann integrable. #### Definition 7.7 A sequence of functions $\{f_n\}$ **converges uniformly** to $f$ on set $E$ if $$ \forall \epsilon>0, \exists N, \forall n\geq N, \forall x\in E, |f_n(x)-f(x)|<\epsilon $$ If $E$ is just a point, then it is the common definition of convergence. _If you have uniform convergence, then you can switch the order of limits._ ### Uniform Convergence and Integrals #### Theorem 7.16 Suppose $\{f_n\}\in\mathscr{R}(\alpha)$ on $[a,b]$ that converges uniformly to $f$ on $[a,b]$. Then $f\in\mathscr{R}(\alpha)$ on $[a,b]$ and $$ \int_a^b f(x)d\alpha=\lim_{n\to\infty}\int_a^b f_n(x)d\alpha $$ #### Proof Define $\epsilon_n=\sup_{x\in[a,b]}|f_n(x)-f(x)|$. By uniform convergence, $\epsilon_n\to 0$ as $n\to\infty$. $$ f_n(x)-\epsilon_n\leq f(x)\leq f_n(x)+\epsilon_n $$ $$ \int_a^b f_n-\epsilon_nd\alpha\leq\overline{\int_a^b}fd\alpha\leq\int_a^bf_n+\epsilon_nd\alpha $$ $$ \int_a^b f_n-\epsilon_n d\alpha\leq\underline{\int_a^b}fd\alpha\leq\int_a^b f_n+\epsilon_n d\alpha $$ So, $$ 0\leq\overline{\int_a^b}fd\alpha-\underline{\int_a^b}fd\alpha\leq\int_a^b \epsilon_n d\alpha+\int_a^b \epsilon_n d\alpha=2\epsilon_n[\alpha(b)-\alpha(a)] $$ So $f\in\mathscr{R}(\alpha)$ and $$ \int_a^b fd\alpha\leq \int_a^b f_n d\alpha+\int_a^b \epsilon_n d\alpha\leq \int_a^b fd\alpha+2\epsilon_n d\alpha $$ So, $$ \int_a^b fd\alpha-\int_a^b \epsilon_n d\alpha\leq \int_a^b f_n d\alpha\leq \int_a^b fd\alpha+\int_a^b \epsilon_n d\alpha $$ Since $\int_a^b \epsilon_n d\alpha\to 0$ as $n\to\infty$, by the squeeze theorem, we have by the squeeze theorem, we have $$ \lim_{n\to\infty}\int_a^b f_nd\alpha=\int_a^b fd\alpha $$ _Key is that $\int_a^b (f-f_n)d\alpha\leq \sup_{x\in[a,b]}|f-f_n|(\alpha(b)-\alpha(a))$_