# Math4121 Lecture 19 ## Continue on the "small set" ### Cantor set #### Theorem: Cantor set is perfect, nowhere dense Proved last lecture. _Other construction of the set by removing the middle non-zero interval $(\frac{1}{n},n>0)$ and take the intersection of all such steps is called $SVC(n)$_ Back to $\frac{1}{3}$ Cantor set. Every step we delete $\frac{2^{n-1}}{3^n}$ of the total "content". Thus, the total length removed after infinitely many steps is: $$ \sum_{n=1}^{\infty} \frac{2^{n-1}}{3^n} = \frac{1}{3}\sum_{n=0}^{\infty} \left(\frac{2}{3}\right)^n=1 $$ However, the quarter cantor set removes $\frac{3^{n-1}}{4^n}$ of the total "content", and the total length removed after infinitely many steps is: Every time we remove $\frac{1}{4^n}$ of the remaining intervals. So on each layer, we remove $\frac{2^{n-1}}{4^n}$ of the total "content". So the total length removed is: $$ \begin{aligned} 1-\frac{1}{4}-\frac{2}{4^2}-\frac{2^2}{4^3}-\cdots&=1-\frac{1}{4}\sum_{n=0}^{\infty} \left(\frac{2}{4}\right)^n\\ &=1-\frac{1}{4}\cdot\frac{1}{1-\frac{2}{4}}\\ &=1-\frac{1}{4}\cdot\frac{4}{2}\\ &=1-\frac{1}{2}\\ &=\frac{1}{2} \end{aligned} $$ #### Generalized Cantor set (SVC(n)) The outer content of $SVC(n)$ is $\frac{n-3}{n-2}$. #### Monotonicity of outer content If $S\subseteq T$, then $c_e(S)\leq c_e(T)$.
Proof of Monotonicity of outer content If $C$ is cover of $T$, then $S\subseteq T\subseteq C$, so $C$ is a cover of $S$. Since $c_e(s)$ takes the inf over a larger set that $c_e(T)$, $c_e(S) \leq c_e(T)$.
#### Theorem Osgood's Lemma Let $S$ be a closed, bounded set in $\mathbb{R}$, and $S_1\subseteq S_2\subseteq \ldots$, and $S=\bigcup_{n=1}^{\infty} S_n$. Then $\lim_{k\to\infty} c_e(S_k)=c_e(S)$.