# Math4121 Lecture 27 ## Lebesgue Measure ### Outer Measure $$ m_e(S)=\inf\left\{\sum_{n=1}^\infty \ell(I_n): S\subset \bigcup_{n=1}^\infty I_n\right\} $$ where $I_j$ is an open interval **Properties:** 1. $m_e(I)=\ell(I)$ 2. Countably sub-additive: $m_e\left(\bigcup_{n=1}^\infty S_n\right)\leq \sum_{n=1}^\infty m_e(S_n)$ (Prove today) 3. does not respect complementation (Build in to Borel measure) Why does Jordan content respect complementation? $(\text{Finite union of intervals })^C=\text{another finite union of intervals}$ We know this failed for countable unions. Example: $$ \bigcup_{n=1}^\infty \left(q_n-\frac{\epsilon}{2^n},q_n+\frac{\epsilon}{2^n}\right) $$ Where $q_n$ is dense. ### Inner Measure Say $S\subset I$ $$ m_i(S)=m(I)-m_e(I\setminus S) $$ where $m(I)=\ell(I)$ Say $S$ is (Lebesgue) measurable if $m_i(S)=m_e(S)$, call this value $m(S)=m_e(S)=m_i(S)$ the (Lebesgue) measure of $S$. #### Corollary of measurability of subsets If $S$ is measurable, and $S\subset T$, then $$ m(S)=m_e(S)=m(I)-m_e(I\setminus S) $$ $$ m(I\setminus S)=m(I)-m(S) $$ $I\setminus S$ is Lebesgue measurable and $m(I)=m(S)+m(I\setminus S)$ #### Proposition 5.8 (Countable additivity over measurable sets) If $S_n$ are measurable, then $$ m_e\left(\bigcup_{n=1}^\infty S_n\right)\leq\sum_{n=1}^\infty m(S_n) $$
Proof Let $\epsilon>0$ and for each $j$, let $\{I_{i,j}\}_{i=1}^\infty$ be a cover of $S_j$ s.t. $$ \sum_{i=1}^\infty \ell(I_{i,j}) #### Corollary: inner measure is always less than or equal to outer measure $$ m_i(S)\leq m_e(S) $$
Proof $$ m_i(S)=m(I)-m_e(I\setminus S)\leq m(I)-m_i(I\setminus S)=m_e(S) $$
### Caratheodory's Criterion #### Lemma 5.7 (Local additivity) If $\{I_j\}_{j=1}^\infty$ are pairwise disjoint open intervals, then $$ m_e\left(S\cap \left(\bigcup_{j=1}^\infty I_j\right)\right)=m_e\left(\bigcup_{j=1}^\infty (S\cap I_j)\right)=\sum_{j=1}^\infty m_e(S\cap I_j) $$
Proof For each $j$, let $\{J_i\}_{i=1}^\infty$ be a cover of $S\cap \left(\bigcup_{j=1}^\infty I_j\right)$ such that $\sum_{i=1}^\infty \ell(J_i) #### Theorem 5.6 (Caratheodory's Criterion) A set $S$ is measurable if and only if for every set $X\in \mathbb{R}$ of finite outer measure, $$ m_e(X)=m_e(X\cap S)+m_e(X\setminus S) $$ Lebesgue: $X=I$ and $S\subset I$ we can cut any set by a measurable set to get a measurable set. (no matter how big the set is)