# Math4121 Lecture 28 ## Continue from last lecture ### Lebesgue Measure #### Outer Measure $$ m_e(S) = \inf_{S \subseteq \bigcup_{j=1}^{\infty} I_j} \sum_{j=1}^{\infty} \ell(I_j) $$ If $S\subseteq I$ is measurable, then $m_i(S)=m_e(I)-m_e(I\setminus S)$ #### Lebesgue criterion for measurability $S\subseteq I$ is measurable if and only if $m_e(I)=m_e(S)+m_e(I\setminus S)$ #### Caratheodory's criteria Lebesgue criterion holds if and only if for any $X$ of finite outer measure, $$ m_e(X)=m_e(X\cap S)+m_e(X\setminus S) $$ > **Local additivity** > > $\{I_j\}_{j=1}^{\infty}$ is a collection of disjoint intervals, then > > $$m_e\left(S\cap \bigcup_{j=1}^{\infty} I_j\right) = \sum_{j=1}^{\infty} m_e(S\cap I_j)$$ > Proved on Friday
Proof $\implies$ If Lebesgue criterion holds for $S$, then for any $X$ of finite outer measure, $$ m_e(X)=m_e(X\cap S)+m_e(X\setminus S) $$ First, we extend Lebesgue criterion to intervals $I$ that may not contain $S$. Then we can find $J,K$ intervals neighboring $I$ such that $S\subseteq \tilde{I}=J\cup I\cup K$. By Lebesgue criterion, $$ \begin{aligned} m_e(\tilde{I})&=m_e(\tilde{I}\cap S)+m_e(\tilde{I}\setminus S)\\ &=m_e(S)+m_e(\tilde{I}\setminus S)\\ &=m_e(S^c\cap \tilde{I})+m_e(S\cap \tilde{I})\\ &=\sum_{L\in \{J,I,K\}}m_e(L\cap S^c)+m_e(L\cap S)\\ &\geq \sum_{L\in \{J,I,K\}}m_e(L)\\ &=m_e(\tilde{I}) \end{aligned} $$ Therefore, $m_e(I)=m_e(S^c\cap I)+m_e(S\cap I)$. Now, let $X$ has finite outer measure, let $\epsilon>0$, we can find $\{I_j\}_{j=1}^{\infty}$ covering $X$ and $$ \sum_{j=1}^{\infty} \ell(I_j) ### Revisit Borel's criterion 1. $m(I)=\ell(I)$ 2. If $\{S_j\}_{j=1}^{\infty}$ is a sequence of disjoint measurable sets, then $m\left(\bigcup_{j=1}^{\infty} S_j\right)=\sum_{j=1}^{\infty} m(S_j)$ 3. If $R\subseteq S$, then $m(S\setminus R)=m(S)-m(R)$ #### Theorem 5.8 (Countable additivity for Lebesgue measure) If $\{S_j\}_{j=1}^{\infty}$ is a sequence of disjoint measurable sets, whose union $S=\bigcup_{j=1}^{\infty} S_j$, has finite outer measure, then $$ m_e(S)=\sum_{j=1}^{\infty} m_e(S_j) $$
Proof First we prove $m_e(\bigcup_{j=1}^{\infty} S_j)=\sum_{j=1}^{\infty} m(S_j)$ by induction. $n=1$ is trivial. Let $n>1$ and suppose the statement holds for $n-1$. Take $X=\bigcup_{j=1}^{n-1} S_j$, then $S_n\cap X=S_n, X\setminus S_n=\bigcup_{j=1}^{n-1} (S_j)$. By Caratheodory's criteria, $$ \begin{aligned} m_e(X)&=m_e(S_n)+m_e(\bigcup_{j=1}^{n-1} S_j)\\ m_e(\bigcup_{j=1}^{n} S_j)&=m(S_n)+\sum_{j=1}^{n-1} m(S_j)\\ &=\sum_{j=1}^{n} m(S_j) \end{aligned} $$ Take the limit as $n\to\infty$, and justify this. $\sum_{j=1}^{\infty} m(S_j)=m_e(\bigcup_{j=1}^{\infty} S_j)\leq m_e(S)$ Since $m_e(S)$ is finite and $m(S_j)$ is monotone, the limit exists. Therefore, $\sum_{j=1}^{\infty} m(S_j)\leq m_e(S)\leq \sum_{j=1}^{\infty} m(S_j)$ So $S$ is measurable.
#### Proposition 5.9 (Preview) Any finite union (and intersection) of measurable sets is measurable.
Proof Let $S_1, S_2$ be measurable sets. We prove by verifying the Caratheodory's criteria for $S_1\cup S_2$.