# Math416 Lecture 13 ## Review on Cauchy's Theorem Cauchy's Theorem states that if a function is holomorphic (complex differentiable) on a simply connected domain, then the integral of that function over any closed contour within that domain is zero. Last lecture we proved the case for convex regions. ### Cauchy's Formula for a Circle Let $C$ be a counterclockwise oriented circle, and let $f$ be a holomorphic function defined in an open set containing $C$ and its interior. Then, $$ f(z_0)=\frac{1}{2\pi i}\int_C\frac{f(z)}{z-z_0}dz $$ for all points $z$ in the interior of $C$. ## New materials ### Mean value property #### Theorem 7.6: Mean value property Special case: Suppose $f$ is holomorphic on some $\mathbb{D}(z_0,R)\subset \mathbb{C}$, by cauchy's formula, $$ f(z_0)=\frac{1}{2\pi i}\int_{C_r}\frac{f(z)}{z-z_0}dz $$ Parameterizing $C_r$, we get $\gamma(t)=z_0+re^{it}$, $0\leq t\leq 2\pi$ $$ \int f(z)dz=\int f(\gamma) \gamma'(t) d t $$ So, $$ f(z_0)=\frac{1}{2\pi i}\int_0^{2\pi}\frac{f(z_0+re^{it})}{re^{it}} ire^{it} dt=\frac{1}{2\pi}\int_{0}^{2\pi} f(z_0+re^{it}) dt $$ This concludes the mean value property for the holomorphic function If $f$ is holomorphic, $f(z_0)$ is the mean value of $f$ on any circle centered at $z_0$ #### Area representation of mean value property Area of $f$ on $\mathbb{D}(z_0,r)$ $$ \frac{1}{\pi r^2}\int_{0}^{2\pi}\int_0^r f(z_0+re^{it}) $$ /*Track lost*/ ### Cauchy Integral #### Definition 7.7 Let $\gamma:[a,b]\to \mathbb{C}$ be piecewise $\mathbb{C}^1$, let $\phi$ be condition on $\gamma$. Then the Cauchy interval of $\phi$ along $\gamma$ is $$ F(z)=\int_{\gamma}\frac{\phi(\zeta)}{\zeta-z}d \zeta $$ #### Theorem Suppose $F(z)=\int_{\gamma}\frac{\phi(z)}{\zeta-z}d z$. Then $F$ has a local power series representation at all points $z_0$ not in $\gamma$. Proof: Let $R=B(z_0,\gamma)>0$, let $z\in \mathbb{D}(z_0,R)$ So $$ \frac{1}{\zeta-z}=\frac{1}{(\zeta-z_0)-(z-z_0)}=\frac{1}{1-z_0}\frac{1}{1-\frac{z-z_0}{\zeta-z_0}} $$ Since $|z-z_0|R$, $|\frac{z-z_0}{\zeta-z_0}|<1$. Converting it to geometric series $$ \frac{1}{1-z_0}\frac{1}{1-\frac{z-z_0}{\zeta-z_0}}=\sum_{n=0}^\infty \left(\frac{z-z_0}{\zeta-z_0}\right)^n $$ So, $$ \begin{aligned} F(z)&=\int_\gamma \frac{\phi(\zeta)}{\zeta - z} d\zeta\\ &=\int_\gamma \frac{\phi(\zeta)}{z-z_0} \sum_{n=0}^\infty \left(\frac{z-z_0}{\zeta-z_0}\right)^n dz\\ &=\sum_{n=0}^\infty (z-z_0)^n \int_\gamma \frac{\phi(\zeta)}{(\zeta-z_0)^{n+1}} \end{aligned} $$ Which gives us an power series representation if we set $a_n=\int_\gamma \frac{\phi(\zeta)}{(\zeta-z_0)^{n+1}}$ QED #### Corollary 7.7 Suppose $F(z)=\int_\gamma \frac{\phi(\zeta)}{\zeta-z_0} dz$, Then, $$ f^{(n)}(z)=n!\int_\gamma \frac{\phi(z)}{(\zeta-z_0)^{n+1}} d\zeta $$ where $z\in \mathbb{C}\setminus \gamma$. Combine with Cauchy integral formula: If $f$ is in $O(\Omega)$, then $\forall z\in \mathbb{D}(z_0,r)$. $$ f(z)=\frac{1}{2\pi i}\int_{C_r}\frac{f(\zeta)}{\zeta-z} d\zeta $$ We have proved that If $f\in O(\Omega)$, then $f$ is locally given by a convergent power series power series has radius of convergence at $z_0$ that is $\geq$ dist($z_0$,boundary $\Omega$) ### Liouville's Theorem #### Definition 7.11 A function that is holomorphic in all of $\mathbb{C}$ is called an entire function. #### Theorem 7.11 Liouville's Theorem Any bounded entire function is constant. > Basic Estimate of integral > > $$\left|\int_\gamma f(z) dz\right|\leq L(\gamma) \max\left|f(z)\right|$$ Since, $$ f'(z)=\frac{1}{2\pi i} \int_{C_r} \frac{f(z)}{(\zeta-z)^2} dz $$ So the modulus of the integral is bounded by $$ \frac{1}{2\pi} |M|\cdot \frac{1}{R^2}=2\pi R\cdot M \frac{1}{R^2}=\frac{M}{R} $$ ### Fundamental Theorem of Algebra #### Theorem 7.12 Fundamental Theorem of ALgebra Every nonconstant polynomial with complex coefficients can be factored over $\mathbb{C}$ into linear factors. #### Corollary For every polynomial with complex coefficients. $$ p(z)=c\prod_{j=i}^n(z-z_0)^{t_j} $$ where the degree of polynomial is $\sum_{j=0}^n t_j$ Proof: Let $p(z)=a_0+a_1z+\cdots+a_nz^n$, where $a_n\neq 0$ and $n\geq 1$. So $$ |p(z)|=|a_nz_n|\left[\left|1+\frac{a_{n-1}}{a_nz}+\cdots+\frac{a_0}{a_nz^n}\right|\right] $$ If $|z|\geq R$, $\left|1+\frac{a_{n-1}}{a_nz}+\cdots+\frac{a_0}{a_nz^n}\right|<\frac{1}{2}$