# Math416 Lecture 23 ## Chapter 9: Generalized Cauchy Theorem ### Separation lemma Let $\Omega$ be an open subset in $\mathbb{C}$, let $K\subset \Omega$ be compact. Then There exists a simple contour $\Gamma$ such that $$ K\subset \text{int}(\Gamma)\subset \Omega $$ #### Corollary 9.9 for separation lemma Let $\Gamma$ be the contour constructed in the separation lemma. Let $f\in O(\Omega)$ be holomorphic on $\Omega$. Then $\forall z_0\in K$ such that $$ f(z_0)=\frac{1}{2\pi i}\int_{\Gamma}\frac{f(z)}{z-z_0}dz $$ Proof: Suppose $h\in O(G)$, then $\int_{\partial S} h(z)dz=0$, by Cauchy's theorem for square, followed from the triangle case. So $\int_{\Gamma} h(z)dz=0=\sum_{j=1}^n \int_{\partial S_j} h(z)dz$ Fix $z_0\in K$, $$ g(z_0)=\begin{cases} \frac{f(z)-f(z_0)}{z-z_0} & z\neq z_0 \\ f'(z_0) & z=z_0 \end{cases} $$ So $\int_{\Gamma} g(z)dz=0$ Thus $$ \begin{aligned} \int_{\Gamma}\frac{f(z)}{z-z_0}dz-\int_{\Gamma}\frac{f(z_0)}{z-z_0}dz&=0 \\ \int_{\Gamma}\frac{f(z)}{z-z_0}dz&=f(z_0)\int_{\Gamma}\frac{1}{z-z_0}dz \\ &=f(z_0)\cdot 2\pi i \end{aligned} $$ QED #### Theorem 9.10 Cauchy's Theorem Let $\Omega$ be an open subset in $\mathbb{C}$, let $\Gamma$ be a contour with $int(\Gamma)\subset \Omega$. Let $f\in O(\Omega)$ be holomorphic on $\Omega$. Then $$ \int_{\Gamma} f(z)dz=0 $$ Proof: Let $K\subset \mathbb{C}\setminus \text{ext}(\Gamma)$. By separation lemma, $\exists \Gamma_1$ s.t. $K\subset \text{int}(\Gamma_1)\subset \Omega$. Notice that Separation lemma ensured that $w\neq z$ for all $w\in \Gamma_1, z\in \Gamma$. By Corollary 9.9, $\forall z\in K, f(z)=\frac{1}{2\pi i}\int_{\Gamma_1}\frac{f(w)}{w-z}dw$ $$ \int_{\Gamma} f(z)dz=\frac{1}{2\pi i}\int_{\Gamma}\left[\int_{\Gamma_1}\frac{f(w)}{w-z}dw\right]dz $$ By Fubini's theorem (In graduate course for analysis), $$ \begin{aligned} \int_{\Gamma} f(z)dz&=\frac{1}{2\pi i}\int_{\Gamma_1}\left[\int_{\Gamma}\frac{f(w)}{w-z}dz\right]dw \\ &=\frac{1}{2\pi i}\int_{\Gamma_1}f(w)\left[\int_{\Gamma}\frac{1}{w-z}dz\right]dw \\ &=\frac{1}{2\pi i}\int_{\Gamma_1}f(w)\cdot 2\pi i \ \text{ind}_{\Gamma}(w)dw \\ &=0 \end{aligned} $$ Since the winding number for $\Gamma$ on $w\in \Gamma_1$ is 0. ($w$ is outside of $\Gamma$) QED ### Homotopy Suppose $\gamma_0, \gamma_1$ are two curves from $[0,1]$ to $\Omega$ with same end points $P,Q$. A homotopy is a continuous function of curves $\gamma_t, 0\leq t\leq 1$, deforming $\gamma_0$ to $\gamma_1$, keeping the end points fixed. Formally, if $H:[0,1]\times [0,1]\to \Omega$ is a continuous function satsifying 1. $H(s,0)=\gamma_0(s)$, $\forall s\in [0,1]$ 2. $H(s,1)=\gamma_1(s)$, $\forall s\in [0,1]$ 3. $H(0,t)=P$, $\forall t\in [0,1]$ 4. $H(1,t)=Q$, $\forall t\in [0,1]$ Then we say $H$ is a homotopy between $\gamma_0$ and $\gamma_1$. (If $\gamma_0$ and $\gamma_1$ are closed curves, $Q=P$) #### Lemma 9.12 Technical Lemma Let $\phi:[0,1]\times [0,1]\to \mathbb{C}\setminus \{0\}$ is continuous. Then there exists a continuous map $\psi:[0,1]\times [0,1]\to \mathbb{C}$ such that $e^\phi=\psi$. Moreover, $\psi$ is unique up to an additive constant in $2\pi i\mathbb{Z}$. Proof: Let $\phi_t(s)=\phi(s,t)$, $0\leq t\leq 1$. Then $\exists \psi_{00}$ such that $e^{\psi_{00}(s)}=\phi(0,t)$. $\exists \psi_{t}(s)$ such that $e^{\psi_{t}(s)}=\phi_t(s)$. We want to show $\psi_t(s)$ is continuous in $t$. Since $\exists \epsilon>0$ such that $\phi(s,t)$ is at least $\epsilon$ away from $0$ for all $s\in [0,1]$ and $t\in [0,1]$. Moreover, $\phi(s,t)$ is uniformly continuous. So $\exists \delta>0$ such that $|\phi(s,t)-\phi(s,t_0)|<\epsilon$ if $|t-t_0|<\delta$. Therefore, $$ \begin{aligned} \left|\frac{\phi(s,t)}{\phi(s,t_0)}-1\right|&<\frac{\epsilon}{\phi(s,t_0)} &<1 \end{aligned} $$ So $\text {Re} \frac{\phi(s,t)}{\phi(s,t_0)}>0$. Therefore, $\text{Log} \frac{\phi(s,t)}{\phi(s,t_0)}=\chi(s,t)$ is continuous on $s\in [0,1], t\in [t_0-\delta, t_0+\delta]$. So $e^{\chi(s,t)}=\frac{\phi(s,t)}{\phi(s,t_0)}$, $\chi(s,t_0)=0,\forall s\in [0,1]$ Define $\tilde{\psi}(s,t)=\chi(s,t)+\chi(s,t_0)$. So this function is continuous. And $e^{\tilde{\psi}(s,t)}=e^{\chi(s,t)+\chi(s,t_0)}=e^{\chi(s,t)}\cdot e^{\chi(s,t_0)}=\phi(s,t)$. $$ \begin{aligned} \tilde{\psi}(0,t_0)&=\chi(0,t_0)+\psi(0,t_0) \\ &=0+\psi_{00}(t_0) \\ &=\psi_{00}(t_0) \end{aligned} $$ $\tilde{\psi}(s,0)$ and $\psi(t,0)$ on $t\in[t_0-\delta, t_0+\delta]$ are both logs of the same function, and agree to each other on $t_0$. Therefore, $\tilde{\psi}(s,0)=\psi(s,0)+\text{const}$ QED #### Theorem 9.13 Cauchy's Theorem for Homotopic Curves