# Math416 Lecture 26 ## Continue on Application to evaluating definite integrals Note: Contour can never go through a singularity. Recall the semi annulus contour. Know that $\int_\gamma f(z)dz=0$. So $\int_A+\int_B+\int_C+\int_D=0$. From last lecture, we know that $\int_D=0$ and $\int_A+\int_C=2i\int_0^\infty \frac{\sin x}{x}dx$. ### Integrating over $B$ Do $B$, we have $\gamma(t)=\epsilon e^{it}$ for $t\in[0,\pi]$. $\int_B=-\int_0^\pi f(\epsilon e^{it})\epsilon i e^{it}dt$. $f(z)=\frac{e^{iz}}{z}=\frac{1}{z}(1+iz-\frac{z^2}{2!}+\cdots)$. So $z f(z)=1+O(\epsilon)$ and $f(z)=\frac{1}{z}+O(\frac{\epsilon}{z})$. $$ \begin{aligned} \int_B&=-\int_0^\pi (\frac{1}{\epsilon}e^{it}+O(1))\epsilon i e^{it}dt\\ &=-i\int_0^\pi 1dt+O(\epsilon)\\ &=-i\pi+O(\epsilon) \end{aligned} $$ ### Integrating over $D$ #### Method 1: Using estimate $z=Re^{it}$ for $t\in[0,\pi]$. $f(z)=\frac{e^{iz}}{z}=\frac{e^{iRe^{it}}}{Re^{it}}$. $Re^{it}=R(\cos t+i\sin t)$, $iRe^{it}=-R(\sin t-i\cos t)$. $e^{iRe^{it}}=e^{-R\sin t}e^{iR\cos t}$. $\max|f(z)|=\max\frac{|e^{iR\cos t}|}{|R e^{it}|}=\frac{1}{R}$. This only bounds the function $|\int_D|\leq \pi R\frac{1}{R}=\pi$. This is not a good estimate. #### Method 2: Hard core integration $\gamma(t)=Re^{it}$ for $t\in[0,\pi]$. $$ \begin{aligned} \int_D&=\int_0^\pi \frac{e^{iRe^{it}}}{R e^{it}}iR e^{it}dt\\ &=i\int_0^\pi e^{iR\cos t}e^{-R\sin t}dt\\ \end{aligned} $$ Notice that we can use $\frac{2}{\pi}t$ to replace $\sin t$. $$ \begin{aligned} \left|\int_D\right|&\leq\int_0^\pi e^{-R\sin t}dt\\ &=2\int_0^{\pi/2} e^{-R\sin t}dt\\ &\leq 2\int_0^{\pi/2} e^{-2Rt/\pi}dt\\ &=-\frac{2\pi}{R}(e^{-\frac{R\pi}{2}t})|_0^{\pi/2}\\ &\leq\frac{\pi}{R} \end{aligned} $$ As $R\to\infty$, $\left|\int_D\right|\to 0$. So $\int_D=0$. So we have $\int_A+\int_C=2i\int_0^\infty \frac{\sin x}{x}dx=i\pi$. So $\int_0^\infty \frac{\sin x}{x}dx=\frac{\pi}{2}$. ## Application to evaluate $\int_{-\infty}^\infty \frac{\cos x}{1+x^4}dx$ $f(z)=\frac{e^{iz}}{1+z^4}=\frac{\cos z+i\sin z}{1+z^4}$. Our desired integral can be evaluated by $\int_{-R}^R f(z)dz$ To evaluate the singularity, $z^4=-1$ has four roots by the De Moivre's theorem. $z^4=-1=e^{i\pi+2k\pi i}$ for $k=0,1,2,3$. So $z=e^{i\theta}$ for $\theta=\frac{\pi}{4}+\frac{k\pi}{2}$ for $k=0,1,2,3$. So the singularities are $z=e^{i\pi/4},e^{i3\pi/4},e^{i5\pi/4},e^{i7\pi/4}$. Only $z=e^{i\pi/4},e^{i3\pi/4}$ are in the upper half plane. So we can use the semi-circle contour to evaluate the integral. Name the path as $\gamma$. $\int_\gamma f(z)dz=2\pi i\left[\operatorname{Res}_{z=e^{i\pi/4}}(f)+\operatorname{Res}_{z=e^{i3\pi/4}}(f)\right]$. The two poles are simple poles. $\operatorname{Res}_{z_0}(f)=\lim_{z\to z_0}(z-z_0)f(z)$. So $$ \begin{aligned} \operatorname{Res}_{z=e^{i\pi/4}}(f)&=\lim_{z\to e^{i\pi/4}}(z-e^{i\pi/4})\frac{e^{iz}}{1+z^4}\\ &=\frac{(z-e^{i\pi/4})e^{iz}}{(z-e^{i\pi/4})(z-e^{i3\pi/4})(z-e^{i5\pi/4})(z-e^{i7\pi/4})}\\ &=\frac{e^{ie^{i\pi/4}}}{(e^{i\pi/4}-e^{i3\pi/4})(e^{i\pi/4}-e^{i5\pi/4})(e^{i\pi/4}-e^{i7\pi/4})} \end{aligned} $$ A short cut goes as follows: We know $p(z)=1+z^4$ has four roots $z_1,z_2,z_3,z_4$. $$ \lim_{z\to z_0}\frac{(z-z_0)}{p(z)}=\frac{1}{p'(z_0)} $$ So $$ \operatorname{Res}_{z=e^{i\pi/4}}(f)=\frac{e^{ie^{i\pi/4}}}{4e^{i3\pi/4}} $$ Similarly, $$ \operatorname{Res}_{z=e^{i3\pi/4}}(f)=\frac{e^{ie^{i3\pi/4}}}{4e^{i\pi/4}} $$ So the sum of the residues is $$ \begin{aligned} \operatorname{Res}_{z=e^{i\pi/4}}(f)+\operatorname{Res}_{z=e^{i3\pi/4}}(f)&=\frac{e^{ie^{i\pi/4}}}{4e^{i3\pi/4}}+\frac{e^{ie^{i3\pi/4}}}{4e^{i\pi/4}}\\ &=\frac{e^{\frac{i}{\sqrt{2}}} e^{-\frac{1}{\sqrt{2}}}}{4[-\frac{1}{\sqrt{2}}+i\frac{1}{\sqrt{2}}]}+\frac{e^{-\frac{i}{\sqrt{2}}}-e^{-\frac{1}{\sqrt{2}}}}{4[\frac{1}{\sqrt{2}}+i\frac{1}{\sqrt{2}}]}\\ &=\frac{\pi\sqrt{2}}{2}e^{-\frac{1}{\sqrt{2}}}(\cos\frac{1}{\sqrt{2}}+\sin\frac{1}{\sqrt{2}}) \end{aligned} $$ SKIP Review on next lecture.