# Math416 Lecture 27 ## Continue on Application to evaluate $\int_{-\infty}^\infty \frac{\cos x}{1+x^4}dx$ Consider the function$f(z)=\frac{e^{iz}}{1+z^4}=\frac{\cos z+i\sin z}{1+z^4}$. Our desired integral can be evaluated by $\int_{-R}^R f(z)dz$ To evaluate the singularity, $z^4=-1$ has four roots by the De Moivre's theorem. $z^4=-1=e^{i\pi+2k\pi i}$ for $k=0,1,2,3$. So $z=e^{i\theta}$ for $\theta=\frac{\pi}{4}+\frac{k\pi}{2}$ for $k=0,1,2,3$. So the singularities are $z=e^{i\pi/4},e^{i3\pi/4},e^{i5\pi/4},e^{i7\pi/4}$. Only $z=e^{i\pi/4},e^{i3\pi/4}$ are in the upper half plane. So we can use the semi-circle contour to evaluate the integral. Name the path as $\gamma$. $\int_\gamma f(z)dz=2\pi i\left[\operatorname{Res}_{z=e^{i\pi/4}}(f)+\operatorname{Res}_{z=e^{i3\pi/4}}(f)\right]$. The two poles are simple poles. $\operatorname{Res}_{z_0}(f)=\lim_{z\to z_0}(z-z_0)f(z)$. So $$ \begin{aligned} \operatorname{Res}_{z=e^{i\pi/4}}(f)&=\lim_{z\to e^{i\pi/4}}(z-e^{i\pi/4})\frac{e^{iz}}{1+z^4}\\ &=\frac{(z-e^{i\pi/4})e^{iz}}{(z-e^{i\pi/4})(z-e^{i3\pi/4})(z-e^{i5\pi/4})(z-e^{i7\pi/4})}\\ &=\frac{e^{ie^{i\pi/4}}}{(e^{i\pi/4}-e^{i3\pi/4})(e^{i\pi/4}-e^{i5\pi/4})(e^{i\pi/4}-e^{i7\pi/4})} \end{aligned} $$ A short cut goes as follows: We know $p(z)=1+z^4$ has four roots $z_1,z_2,z_3,z_4$. $$ \lim_{z\to z_0}\frac{(z-z_0)}{p(z)}=\frac{1}{p'(z_0)} $$ So $$ \operatorname{Res}_{z=e^{i\pi/4}}(f)=\frac{e^{ie^{i\pi/4}}}{4e^{i3\pi/4}} $$ Similarly, $$ \operatorname{Res}_{z=e^{i3\pi/4}}(f)=\frac{e^{ie^{i3\pi/4}}}{4e^{i\pi/4}} $$ So the sum of the residues is $$ \begin{aligned} \operatorname{Res}_{z=e^{i\pi/4}}(f)+\operatorname{Res}_{z=e^{i3\pi/4}}(f)&=\frac{e^{ie^{i\pi/4}}}{4e^{i3\pi/4}}+\frac{e^{ie^{i3\pi/4}}}{4e^{i\pi/4}}\\ &=\frac{e^{\frac{i}{\sqrt{2}}} e^{-\frac{1}{\sqrt{2}}}}{4[-\frac{1}{\sqrt{2}}+i\frac{1}{\sqrt{2}}]}+\frac{e^{-\frac{i}{\sqrt{2}}}-e^{-\frac{1}{\sqrt{2}}}}{4[\frac{1}{\sqrt{2}}+i\frac{1}{\sqrt{2}}]}\\ &=\frac{\pi\sqrt{2}}{2}e^{-\frac{1}{\sqrt{2}}}(\cos\frac{1}{\sqrt{2}}+\sin\frac{1}{\sqrt{2}}) \end{aligned} $$ For the semicircle part, we can bound our estimate by $$ \left|\int_{C_R}f(z)dz\right|\leq\pi R\max_{z\in C_R}|f(z)|\leq \pi \frac{1}{R^4}\to 0 $$ as $R\to\infty$. So $$ \int_{-\infty}^\infty\frac{\cos x}{1+x^4}dx=\frac{\pi\sqrt{2}}{2}e^{-\frac{1}{\sqrt{2}}}(\cos\frac{1}{\sqrt{2}}+\sin\frac{1}{\sqrt{2}}) $$ ## Big idea of this course $f$ is holomorphic $\iff$ $f$ has complex derivative. $f$ is holomorphic $\iff$ $f$ satisfies Cauchy-Riemann equations $\frac{\partial u}{\partial x}=\frac{\partial v}{\partial y}$ and $\frac{\partial u}{\partial y}=-\frac{\partial v}{\partial x}$ $f$ is holomorphic $\iff$ $f$ is analytic (is locally given by power series). The power series is integrable/differentiable term by term in the radius of convergence. ### Laurent series Similar to power series both with annulus of convergence. $f(z)=\sum_{n=-\infty}^\infty a_n(z-z_0)^n$ for $z\in A(z_0,r,R)$. Identity theorem: If $f$ is holomorphic on a domain $\Omega$, it is uniquely determined by its values on any sets with a limit point in $\Omega$. ### Cauchy's Theorem $$ \int_\gamma f(z)dz=0 $$ If $f$ is holomorphic on $\Omega$ and $\gamma$ is a closed path in $\Omega$ and $\gamma\cup \operatorname{int}\gamma\subset \Omega$, then $\int_\gamma f(z)dz=0$. ### Favorite estimate $$ \left|\int_\gamma f(z)dz\right|\leq \sup_{z\in\gamma}|f(z)|\cdot \operatorname{length}(\gamma) $$ ### Cauchy's Integral Formula $$ f(z_0)=\frac{1}{2\pi i}\int_\gamma \frac{f(z)}{z-z_0}dz $$ where $z_0\in \operatorname{int}\gamma$ and $\gamma$ is a closed path. Extension: If $f$ is holomorphic on $\Omega$ and $z_0\in \Omega$, then $f$ is infinitely differentiable and $$ f^{(n)}(z_0)=\frac{n!}{2\pi i}\int_\gamma \frac{f(z)}{(z-z_0)^{n+1}}dz $$ ### Residue theorem If $f$ is holomorphic on $\Omega$ except for a finite number of isolated singularities $z_1,z_2,\dots,z_p$, and $\Gamma$ is a curve inside $\Omega$ that don't pass through any of the singularities ($\Gamma\subset \Omega\setminus \{z_1,z_2,\dots,z_p\}$), then $$ \int_\Gamma f(z)dz=2\pi i\sum_{z_i}\operatorname{ind}_{\Gamma}(z_i) \operatorname{res}_{z_i}(f) $$ ### Harmonic conjugate Locally, always have harmonic conjugates. Globally can do this iff domain is simply connected. ### Schwarz-pick's Lemma: If $f$ maps $D$ to $D$ and $f(0)=0$, then $|f(z)|\leq |z|$ for all $z\in D$. and $|f'(0)|\leq 1$. For mobius map, $f:D\to D$ holds, $\varphi(f(z),f(w))=\varphi(z,w)$ for all $z,w\in D$. $$ \varphi(z,w)=\frac{z-w}{1-\overline{w}z} $$ ### Convergence #### Types of convergence **Converge pointwise** (Not very strong): $\forall x\in X, \lim_{n\to\infty}f_n(x)=f(x)$. Or, $\forall x\in X, \forall \epsilon>0, \exists N>0, \forall n\geq N \implies |f_n(x)-f(x)|<\epsilon$. **Converge uniformly** (Much better): $\forall \epsilon>0, \exists N>0, \forall n\geq N \implies \forall x\in X, |f_n(x)-f(x)|<\epsilon$. **Converge locally uniformly** (Strong): $\forall x\in X$, $\exists$ open $x\in U$, such that $f_n\to f$ uniformly on $U$. **Converge uniformly on compact subsets** (Good enough for local properties): $\forall$ compact $K\subset X$, $f_n\to f$ uniformly on $K$. #### Weierstrass' Theorem If $f_n\in O(\Omega)$ and $f_n\to f$ locally uniformly, then $f\in O(\Omega)$. #### Cauchy-Hadamard's Theorem For a power series, $\sum_{n=0}^\infty a_n(z-z_0)^n$, the radius of convergence is $$ R=\frac{1}{\limsup_{n\to\infty}|a_n|^{1/n}} $$ On $B(z_0,R)$, the series converges locally uniformly and absolutely. ## Argument and Logarithm $\arg z$ is any $\theta$ such that $z=re^{i\theta}$. $\operatorname{Arg} z$ is the principal value of the argument, $-\pi<\operatorname{Arg} z\leq \pi$. $\log z$ is the principal value of the logarithm, $\log z=\ln |z|+i\arg z$. $\operatorname{Log} z$ is the set of all logarithms of $z$, $\operatorname{Log} z=\{\log z+2k\pi i: k\in\mathbb{Z}\}$. END