# Math416 Lecture 6 ## Review ### Linear Fractional Transformations Transformations of the form $f(z)=\frac{az+b}{cz+d}$,$a,b,c,d\in\mathbb{C}$ and $ad-bc\neq 0$ are called linear fractional transformations. #### Theorem 3.8 Preservation of clircles We defined clircle to be a circle or a line. The circle equation is: Let $z=u+iv$ be the center of the circle, $r$ be the radius of the circle. $$ circle=\{z\in\mathbb{C}:|z-c|=r\} $$ This is: $$ |z|^2-c\overline{z}-\overline{c}z+|c|^2-r^2=0 $$ If $\phi$ is a non-constant linear fractional transformation, then $\phi$ maps clircles to clircles. We claim that a map is circle preserving if and only if for some $\alpha,\beta,\gamma,\delta\in\mathbb{R}$. $$ \alpha|z|^2+\beta Re(z)+\gamma Im(z)+\delta=0 $$ when $\alpha=0$, it is a line. when $\alpha\neq 0$, it is a circle.
Proof Let $w=u+iv=\frac{1}{z}$, so $\frac{1}{w}=\frac{u}{u^2+v^2}-i\frac{v}{u^2+v^2}$. Then the original equation becomes: $$ \alpha\left(\frac{u}{u^2+v^2}\right)^2+\beta\left(\frac{u}{u^2+v^2}\right)+\gamma\left(-\frac{v}{u^2+v^2}\right)+\delta=0 $$ Which is in the form of circle equation.
## Chapter 4 Elementary functions > $e^t=\sum_{n=0}^{\infty}\frac{t^n}{n!}$ So, following the definition of $e^z$, we have: $$ \begin{aligned} e^{x+iy}&=e^xe^{iy} \\ &=e^x\left(\sum_{n=0}^{\infty}\frac{(iy)^n}{n!}\right) \\ &=e^x\left(\sum_{n=0}^{\infty}\frac{(-1)^ny^n}{n!}\right) \\ &=e^x(\cos y+i\sin y) \end{aligned} $$ ### $e^z$ The exponential of $e^z=x+iy$ is defined as: $$ e^z=exp(z)=e^x(\cos y+i\sin y) $$ So, $$ |e^z|=|e^x||\cos y+i\sin y|=e^x $$ #### Theorem 4.3 $e^z$ is holomorphic $e^z$ is holomorphic on $\mathbb{C}$.
Proof $$ \begin{aligned} \frac{\partial}{\partial z}e^z&=\frac{1}{2}\left(\frac{\partial}{\partial x}+\frac{i}{\partial y}\right)e^x(\cos y+i\sin y) \\ &=\frac{1}{2}e^x(\cos y+i\sin y)+ie^x(-\sin y+i\cos y) \\ &=0 \end{aligned} $$
#### Theorem 4.4 $e^z$ is periodic $e^z$ is periodic with period $2\pi i$.
Proof $$ e^{z+2\pi i}=e^z e^{2\pi i}=e^z\cdot 1=e^z $$
#### Theorem 4.5 $e^z$ as a map $e^z$ is a map from $\mathbb{C}$ to $\mathbb{C}$ with period $2\pi i$. $$ e^{\pi i}+1=0 $$ This is a map from cartesian coordinates to polar coordinates, where $e^x$ is the radius and $y$ is the angle. This map attains every value in $\mathbb{C}\setminus\{0\}$. #### Definition 4.6-8 $\cos z$ and $\sin z$ $$ \cos z=\frac{1}{2}(e^{iz}+e^{-iz}) $$ $$ \sin z=\frac{1}{2i}(e^{iz}-e^{-iz}) $$ $$ \cosh z=\frac{1}{2}(e^z+e^{-z}) $$ $$ \sinh z=\frac{1}{2}(e^z-e^{-z}) $$ From this definition, we can see that $\cos z$ and $\sin z$ are no longer bounded in the complex plane. And this definition is still compatible with the previous definition of $\cos$ and $\sin$ when $z$ is real. Moreover, $$ \cosh(iz)=\cos z $$ $$ \sinh(iz)=i\sin z $$ ### Logarithm #### Definition 4.9 Logarithm A logarithm of $a$ is any $b$ such that $e^b=a$. If $a=0$, then no logarithm exists. If $a\neq 0$, then there exists infinitely many logarithms of $a$. Let $a=re^{i\theta}$, $b=x+iy$ be a logarithm of $a$. Then, $$ e^{x+iy}=re^{i\theta} $$ Since logarithm is not unique, we can always add $2k\pi i$ to the angle. If $y\in(-\pi,\pi]$, then $\log a=b$ means $e^b=a$ and $Im(b)\in(-\pi,\pi]$. If $a=re^{i\theta}$, then $\log a=\log r+i(\theta_0+2k\pi)$. #### Definition 4.10 of Branch of $\arg z$ and $\log z$ Let $G$ be an open connected subset of $\mathbb{C}\setminus\{0\}$. A branch of $\arg(z)$ in $G$ is a continuous function $\alpha:G\to G$, such that $\alpha(z)$ is a value of $\arg(z)$. A branch of $\log(z)$ in $G$ is a continuous function $\beta$, such that $e^{\beta(z)}=z$. Note: $G$ has a branch of $\arg(z)$ if and only if it has a branch of $\log(z)$.
Proof Suppose there exists $\alpha(z)$ such that $\forall z\in G$, $\alpha(z)\in G$, then $l(z)=\ln|z|+i\alpha(z)$ is a branch of $\log(z)$. Suppose there exists $l(z)$ such that $\forall z\in G$, $l(z)\in G$, then $\alpha(z)=Im(z)$ is a branch of $\arg(z)$.
If $G=\mathbb{C}\setminus\{0\}$, then not branch of $\arg(z)$ exists. #### Corollary of 4.10 Suppose $\alpha_1$ and $\alpha_2$ are two branches of $\arg(z)$ in $G$. Then, $$ \alpha_1(z)-\alpha_2(z)=2k\pi $$ for some $k\in\mathbb{Z}$. Suppose $l_1$ and $l_2$ are two branches of $\log(z)$ in $G$. Then, $$ l_1(z)-l_2(z)=2k\pi i $$ for some $k\in\mathbb{Z}$. #### Theorem 4.11 $\log(z)$ is holomorphic on $\mathbb{C}\setminus\{0\}$.
Proof (continue on next lecture) Method 1: Use polar coordinates. (See in homework) Method 2: Use the fact that $\log(z)$ is the inverse of $e^z$. Suppose $h=s+it$, $e^h=e^s(\cos t+i\sin t)$, $e^h-1=e^s(\cos t-1)+i\sin t$. So $$ \begin{aligned} \frac{e^h-1}{h}&=\frac{(s+it)e^s(\cos t-1)+i\sin t}{s^2+t^2} \\ &=\frac{e^s(\cos t-1)}{s^2+t^2}+i\frac{\sin t}{s^2+t^2} \end{aligned} $$ Continue next time.