# Math416 Lecture 9 ## Review ### Power Series Let $f(z)=\sum_{n=0}^{\infty}a_n(z-z_0)^n$ be a power series. #### Radius of Convergence The radius of convergence of a power series is $$ R=\frac{1}{\limsup_{n\to\infty}|a_n|^{1/n}}. $$ ## New Material on Power Series ### Derivative of Power Series Let $f(z)=\sum_{n=0}^{\infty}a_n(z-z_0)^n$ be a power series. Let $g(z)=\sum_{n=0}^{\infty}na_n(z-z_0)^{n-1}$ be another power series. Then $g$ is holomorphic on $D(z_0,R)$ and $g'(z)=f(z)$ for all $z\in D(z_0,R)$. and $f'(z)=g(z)$. Proof: Note radius of convergence of $g$ is also $R$. $\limsup_{n\to\infty}|na_n|^{1/(n-1)}=\limsup_{n\to\infty}|a_n|^{1/n}$. Let $z\in D(z_0,R)$. let $|z-z_0|<\rho0$ such that on $D(z,\epsilon)\subset U$, $h$ can be represented as a power series $\sum_{n=0}^{\infty}a_n(z-z_0)^n$. #### Theorem (Analytic implies holomorphic) If $f$ is analytic on $U$, then $f$ is holomorphic on $U$. $\sum_{n=0}^{\infty}\frac{1}{n!}f^{(n)}(z)^n$ Radius of convergence is $\infty$. So $f(0)=1=ce^0=c$ $\sum_{n=0}^{\infty}\frac{1}{n}z^n$ Radius of convergence is $1$. $f'=\sum_{n=1}^{\infty}z^{n-1}=\frac{1}{1-z}$ (Geometric series) So $g(z)=c+\log(\frac{1}{1-z})=c+2\pi k i=\log(\frac{1}{1-z})+2\pi k i$ #### Cauchy Product of power series Let $f(z)=\sum_{n=0}^{\infty}a_nz^n$ and $g(z)=\sum_{n=0}^{\infty}b_nz^n$ be two power series. Then $f(z)g(z)=\sum_{n=0}^{\infty}=\sum_{n=0}^{\infty}c_nz^n=\sum_{n=0}^{\infty}\sum_{k=0}^{n}a_kb_{n-k}z^n$ #### Theorem of radius of convergence of Cauchy product Let $f(z)=\sum_{n=0}^{\infty}a_nz^n$ and $g(z)=\sum_{n=0}^{\infty}b_nz^n$ be two power series. Then the radius of convergence of $f(z)g(z)$ is at least $\min(R_f,R_g)$. Without loss of generality, assume $z_0=0$. $$ \begin{aligned} \left(\sum_{j=0}^{N}a_jz^j\right)\left(\sum_{k=0}^{N}b_kz^k\right)-\sum_{l=0}^{N}c_lz^l&=\sum_{j=0}^{N}\sum_{k=N-j}^{N}a_jb_kz^{j+k}\\ &\leq\sum_{N/2\leq\max(j,k)\leq N}|a_j||b_k||z^{j+k}|\\ &\leq\left(\sum_{j=N/2}^{N}|a_j||z^j|\right)\left(\sum_{k=0}^{\infty}|b_k||z^k|\right)+\left(\sum_{j=0}^{\infty}|a_j||z^j|\right)\left(\sum_{k=N/2}^{\infty}|b_k||z^k|\right)\\ \end{aligned} $$ Since $\sum_{j=0}^{\infty}|a_j||z^j|$ and $\sum_{k=0}^{\infty}|b_k||z^k|$ are convergent, and $\sum_{j=N/2}^{N}|a_j||z^j|$ and $\sum_{k=N/2}^{\infty}|b_k||z^k|$ converges to zero. So $\left|\left(\sum_{j=0}^{N}a_jz^j\right)\left(\sum_{k=0}^{N}b_kz^k\right)-\sum_{l=0}^{N}c_lz^l\right|\leq\left(\sum_{j=N/2}^{N}|a_j||z^j|\right)\left(\sum_{k=0}^{\infty}|b_k||z^k|\right)+\left(\sum_{j=0}^{\infty}|a_j||z^j|\right)\left(\sum_{k=N/2}^{\infty}|b_k||z^k|\right)\to 0$ as $N\to\infty$. So $\sum_{n=0}^{\infty}c_nz^n$ converges to $f(z)g(z)$ on $D(0,R_fR_g)$.