# Math4201 Topology I (Lecture 5 Bonus) ## Comparison of two types of topologies Let $X=\mathbb{R}^2$ and the two types of topologies are: The "circular topology": $$ \mathcal{T}_c=\{B_r(p)\mid p\in \mathbb{R}^2,r>0\} $$ The "rectangle topology": $$ \mathcal{T}_r=\{(a,b)\times (c,d)\mid a,b,c,d\in \mathbb{R},a Are these two topologies the same? ### Comparison of two topologies #### Definition of finer and coarser Let $\mathcal{T}$ and $\mathcal{T}'$ be two topologies on $X$. We say $\mathcal{T}$ is finer than $\mathcal{T}'$ if $\mathcal{T}'\subseteq \mathcal{T}$. We say $\mathcal{T}$ is coarser than $\mathcal{T}'$ if $\mathcal{T}\subseteq \mathcal{T}'$. We say $\mathcal{T}$ and $\mathcal{T}'$ are equivalent if $\mathcal{T}=\mathcal{T}'$. $\mathcal{T}$ is strictly finer than $\mathcal{T}'$ if $\mathcal{T}'\subsetneq \mathcal{T}$. (that is, $\mathcal{T}'$ is finer and not equivalent to $\mathcal{T}$) $\mathcal{T}$ is strictly coarser than $\mathcal{T}'$ if $\mathcal{T}\subsetneq \mathcal{T}'$. (that is, $\mathcal{T}$ is coarser and not equivalent to $\mathcal{T}'$)
Example (discrete topology is finer than the trivial topology) Let $X$ be an arbitrary set. The discrete topology is $\mathcal{T}_1 = \mathcal{P}(X)=\{U \subseteq X\}$ The trivial topology is $\mathcal{T}_0 = \{\emptyset, X\}$ Clearly, $\mathcal{T}_1 \subseteq \mathcal{T}_0$. So the discrete topology is finer than the trivial topology.
#### Lemma > [!TIP] > > Motivating condition: > > We want $U$ be an open set in $\mathcal{T}'$, then $U$ has to be open with respect to $\mathcal{T}$. In other words, $\forall x\in U, \exists$ some $B\in \mathcal{B}$ such that $x\in B\subseteq U$. Let $\mathcal{T}$ and $\mathcal{T}'$ be topologies on $X$ associated with bases $\mathcal{B}$ and $\mathcal{B}'$. Then $$ \mathcal{T}\text{ is finer than } \mathcal{T}'\iff \text{ for any } x\in X, x\in B'\in \mathcal{B}', \exists B\in \mathcal{B} \text{ such that } x\in B\subseteq B' $$
Proof $(\Rightarrow)$ Let $B'\in \mathcal{B}'$. If $x\in B'$, then $B'\in \mathcal{T}'$ and $T$ is finer than $T'$, so $B'\in \mathcal{T}$. Take $T=\mathcal{T}_{\mathcal{B}}$. $\exists B\in \mathcal{B}$ such that $x\in B\subseteq B'$. $(\Leftarrow)$ Let $U\in \mathcal{T}$. Then $U=\bigcup_{\alpha \in I} B_\alpha'$ for some $\{B_\alpha'\}_{\alpha \in I}\subseteq \mathcal{B}'$. For any $B_\alpha'$ and any $x\in \mathcal{B}_\alpha'$, $\exists B_\alpha\in \mathcal{B}$ such that $x\in B_\alpha\subseteq B_\alpha'$. Then $B_\alpha'$ is open set in $\mathcal{T}$. So $U$ is open in $\mathcal{T}$. $T$ is finer than $T'$.
Back to the example: For every point in open circle, we can find a rectangle that contains it. For every point in open rectangle, we can find a circle that contains it. So these two topologies are equivalent. #### Standard topology in $\mathbb{R}^2$ The standard topology in $\mathbb{R}^2$ is the topology generated by the basis $\mathcal{B}_{st}=\{(a,b)\times (c,d)\mid a,b,c,d\in \mathbb{R},a Example (lower limit topology is strictly finer than the standard topology) The lower limit topology is the topology generated by the basis $\mathcal{B}_{ll}=\{[a,b)\mid a,b\in \mathbb{R},a