# Lecture 14 ## Chapter III Linear maps **Assumption: $U,V,W$ are vector spaces (over $\mathbb{F}$)** ### Matrices 3C Review #### Proposition 3.76 $$ M(Tv)=M(T)M(v) $$ #### Theorem 3.78 Let $V,W$ be finite dimensional vector space, and $T\in \mathscr{L}(V,W)$ then $dim\ range\ T=column\ rank (M(T))=rank(M(T))$ Proof: $range=Span\{Tv_1,...,Tv_n\}$ compare to $Span\{M(T)_{\cdot,1},...,M(T)_{\cdot, n}\}=Span\{M(T)M(v_1),...,M(T)M(v_n)\}=Span\{M(Tv_1),...,M(Tv_n)\}$ Since $M$ is a isomorphism, then the theorem makes sense. #### Change of Basis #### Definition 3.79, 3.80 The identity matrix $$ I=\begin{pmatrix} 1.& 0\\ 0& '1\\ \end{pmatrix} $$ The inverse matrix of an invertible matrix $A$ denoted $A^{-1}$ is the matrix such that $$ AA^{-1}=I=A^{-1}A $$ Question: Let $u_1,...,u_n$ and $v_1,...,v_n$ be two bases for $V$. What is $M(I,(u_1,...,u_n),(v_1,...,v_n)),I\in \mathscr{L}(V)$ #### Proposition 3.82 Let $u_1,...,u_n$ and $v_1,...,v_n$ be bases of $V$, then $M(I,(u_1,...,u_n),(v_1,...,v_n)),I\in \mathscr{L}(V)$ and $M(I,(v_1,...,v_n),(u_1,...,u_n)),I\in \mathscr{L}(V)$ are inverse to each other. Proof: $$ M(I,(u_1,...,u_n),(v-1,...,v_n)),I\in \mathscr{L}(V) M(I,(v-1,...,v_n),(u_1,...,u_n))=M(I,(u_1,...,u_n),(u_1,...,u_n)) $$ #### Theorem 3.84 Change of Basis Let $u_1,...,u_n$ and $v_1,...,v_n$ be two bases for $V$ and $T\in \mathscr{L}(v), A=M(T,(u_1,...,u_n)), B=M(T,(v_1,...,v_n)), C=M(I,(u_1,...,u_n),(v_1,...,v_n))$, then $A=C^{-1}BC$ #### Theorem 3.86 Let $T\in \mathscr{L}(v)$ be an invertible linear map, then $M(T^{-1})=M(T)^{-1}$ ### Products and Quotients of Vector Spaces 3E Goals: To construct vectors spaces from other vector spaces. #### Definition 3.87 Suppose $V_1,...,V_m$ vectors spaces over some field $\mathbb{F}$, then the product is given by $$ V_1\times ...\times V_n=\{(v_1,v_2,...,v_n)\vert v_1\in V_1, v_2\in V_2,...,v_n\in V_n\} $$ with addition given by $$ (v_1,...,v_n)+(u_1,...,u_n)=(v_1+u_1,...,v_n+u_n) $$ and scalar multiplication $$ \lambda (v_1,...,v_n)=(\lambda v_1,...,\lambda v_n),\lambda \in \mathbb{F} $$ #### Theorem 3.89 If $v_1,...,v_n$ are vectors paces over $\mathbb{F}$ then $V_1\times ...\times V_n$ is a vector space over $\mathbb{F}$ Example: $V=\mathscr{P}_2(\mathbb{R})\times \mathbb{R}^2=\{(p,v)\vert p\in \mathscr{P}_2(\mathbb{R}), v\in \mathbb{R}^2\}=\{(a_0+a_1x+a_2x,(b,c))\vert a_0,a_1,a_2,b,c\in \mathbb{R}\}$ A basis for $V$ would be $(1,(0,0)),(x,(0,0)),(x^2,(0,0)),(0,(1,0)),(0,(0,1))$ #### Theorem 3.92 $$ dim(V_1\times ...\times V_n)=dim(V_1)+...+dim(V_n) $$ Sketch of proof: take a basis for each $V_k$, make them vectors in the product then combine the entire list of vector to be basis. Example: $\mathbb{R}^2\times \mathbb{R}^3=\{((a,b),(c,d,e))\vert a,b,c,d,e\in \R\}$ $\mathbb{R}^2\times \mathbb{R}^3\cong \mathbb{R}^5,((a,b),(c,d,e))\mapsto(a,b,c,d,e)$ #### Theorem 3.93 Let $V_1,...,V_m\subseteq V$, define $\Gamma: V_1\times...\times V_m\to V_1+...+V_m$. $\Gamma(v_1,...,v_n)=v_1+...+v_n$ then $\Gamma$ is always surjective. And it is injective if and only if $V_1+...+V_m$ is a direct sum. Sketch of the proof: injective $\iff null\ T\{ (0,...,0) \} \iff$ the only way to write $0=v_1,...,v_m$ is $v_1=...=v_n=0 \iff$ then $V_1+...+V_m$ is a direct sum #### Theorem 3.94 $V_1+...+V_m$ is a direct sum if and only if $dim(V_1+...+V_m)=dim(V_1)+...+dim(V_m)$ Proof: Use $\Gamma$ above is an isomorphism $\iff$ $V_1+...+V_m$ is a direct sum Use $\Gamma$ above is an isomorphism $\implies dim(V_1+...+V_m)=dim(V_1)+...+dim(V_m)$