# Lecture 16 ## Chapter IV Polynomials **$\mathbb{F}$ denotes $\mathbb{R}$ or $\mathbb{C}$** --- Review ### Products and Quotients of Vector Spaces 3E #### Theorem 3.107 Let $T\in \mathscr{L}(V,W)$, then define $\tilde{T}:V/null\ T\to W$, given by $\tilde{T}(v+null\ T)=Tv$ a) $\tilde{T}\circ \pi=T$ where $\pi: V/null\ T$ b) $\tilde{T}$ is injective c) $range\ T=range\ \tilde{T}$ d) $V/null\ T$ and $range\ T$ are isomorphic Example: Consider $D:\mathscr{P}_M(\mathbb{F})\to \mathscr{P}_{m-1}(\mathbb{F})$ be differentiation map $D$ is surjective by $D$ is not injective $null\ D=${constant polynomials} $\tilde{D}:\mathscr{P}_M(\mathbb{F})/$ constant polynomials $\to \mathscr{P}_{m-1}(\mathbb{F})$ This map ($\tilde{D}$) is injective since $range\ \tilde{D}=range\ D=\mathscr{P}_{m-1}(\mathbb{F})$ $\tilde{D}^{-1}:\mathscr{P}_{m-1}(\mathbb{F})\to \mathscr{P}_M(\mathbb{F})/$ constant polynomials (anti-derivative) --- New materials ### Complex numbers 1A #### Definition 1.1 Complex numbers $z=a+bi$ is a complex number for $a,b\in \mathbb{R}$, ($Re\ z=a,Im\ z=b$) $\bar{z}=a-bi$ complex conjugate $|z|=\sqrt{a^2+b^2}$ #### Properties 1.n 1. $z+\bar{z}=2a$ 2. $z-\bar{z}=2b$ 3. $z\bar{z}=|z|^2$ 4. $\overline{z+w}=\bar{z}+\bar{w}$ 5. $\overline{zw}=\bar{z}\bar{w}$ 6. $\bar{\bar{z}}=z$ 7. $|a|\leq |z|$ 8. $|b|\leq |z|$ 9. $|\bar{z}|=|z|$ 10. $|zw|=|z||w|$ 11. $|z+w|\leq |z|+|w|$ ### Polynomials 4A $$ p(x)=\sum_{i=0}^{n}a_i x^i $$ #### Lemma 4.6 If $p$ is a polynomial and $\lambda$ is a zero of $p$, then $p(x)=(x-\lambda)q(x)$ for some polynomial $q(x)$ with $deg\ q=deg\ p -1$ #### Lemma 4.8 If $m=deg\ p,p\neq 0$ then $p$ has at most $m$ zeros. Sketch of Proof: Induction using 4.6 ### Division Algorithm 4B #### Theorem 4.9 Suppose $p,s\in \mathscr{P}(\mathbb{F}),s\neq 0$. Then there exists a unique $q,r\in \mathscr{P}(\mathbb{F})$ such that $p=sq+r$, and $deg\ r\leq deg\ s$ Proof: Let $n=deg\ p,m=deg\ s$ if $n< m$, we are done $q=0,r=p$. Otherwise ($n\leq m$) consider $1,z,...,z^{m-1},s,zs,...,z^{r-m}s$. is a basis of $\mathscr{P}_n(\mathbb{F})$. Then there exists a unique $a_1,...,a_n\in\mathbb{F}$ such that $p(z)=a_0+a_1z+...+a_{m-1}z^{m-1}+a_m s+...+ a_n z^{n-m}s=(a_0+a_1z+...+a_{m-1}z^{m-1})+s(a_m +...+a_n z^{n-m})$ let $r=(a_0+a_1z+...+a_{m-1}z^{m-1}), q=(a_m +...+a_n z^{n-m})$ then we are done. ### Zeros of polynomial over $\mathbb{C}$ 4C #### Theorem 4.12 Fundamental Theorem of Algorithm Every non-constant polynomial over $\mathbb{C}$ has at least one root. #### Theorem 4.13 If $p\in \mathscr{P}(\mathbb{C})$ then $p$ has a unique factorization up to order as $p(z)=c(z-\lambda_1)(z-\lambda_m)$ for $c,\lambda_1,...,\lambda_m\in \mathbb{C}$ Sketch of Proof: (4.12)+(4.6) ### Zeros of polynomial over $\mathbb{R}$ 4D #### Proposition 4.14 If $p\in \mathscr{P}(\mathbb{C})$ with real coefficients, then if $p(\lambda )=0$ then $p(\bar{\lambda})=0$ #### Theorem 4.16 Fundamental Theorem of Algorithm for real numbers If $p$ is a non-constant polynomial over $\mathbb{R}$ the $p$ has a unique factorization $p(x)=c(x-\lambda_1)...(x-\lambda_m)(x^2+b_1 x+c_1)...(x^2+b_m x+c_m)$ with $b_k^2\leq 4c_k$