# Lecture 17 ## Chapter III Linear maps **Assumption: $U,V,W$ are vector spaces (over $\mathbb{F}$)** ### Duality 3F #### Definition 3.108 A **linear functional** on $V$ is a linear map from $V$ to $\mathbb{F}$. #### Definition 3.110 The **dual space** of V denoted by $V'$ (or in some books $\check{V},V^*$) is given by $V'=\mathscr{L}(V,\mathbb{F})$. The elements of $V'$ are also called **linear functional**. #### Theorem 3.111 The $dim\ V'=dim\ V$. Proof: $dim\ \mathscr{L}(V,\mathbb{F})=dim\ V\cdot dim\ \mathbb{F}$ #### Definition 3.112 If $v_1,...,v_n$ is a basis for $V$, then the **dual basis** of $v_1,..,v_n$ is $\psi_1,...,\psi_n\in V'$ where $$ \psi_j(v_k)=\begin{cases} 1 \textup{ if }k=i\\ 0 \textup{ if }k\neq i \end{cases} $$ Example: $V=\mathbb{R}^3$ $e_1,e_2,e_3$ the standard basis, the dual basis $\psi_1,\psi_2,\psi_3$ is given by $\psi_1 (x,y,z)=x,\psi_2 (x,y,z)=y,\psi_3 (x,y,z)=z$ #### Theorem 3.116 When $v_1,...,v_n$ a basis of $V$ the dual basis $\psi_1,...,\psi_n\in V'$ is a basis Sketch of Proof: $dim\ V'=dim\ V=n$, $\psi_1,...,\psi_n\in V'$ are linearly independent. #### Theorem 3.114 Given $v_1,...,v_n$ a basis of $V$, and $\psi_1,...,\psi_n\in V'$ be dual basis of $V'$. then for $v\in V$, $$ v=\psi_1(v)v_1+...+\psi_n(v)v_n $$ Proof: Let $V=a_1 v_1+...+a_n v_n$, consider $\psi_k(v)$, by definition $\psi_k(v)=\psi_k(a_1 v_1+...+a_n v_n)=a_1\psi_k( v_1)+...+a_n\psi_k( v_n)=a_k$ #### Definition 3.118 Suppose $T\in \mathscr{L}(V,W)$. The **dual map** $T'\in \mathcal{R}( W', V')$ defined by $T'(\psi)=\psi\circ T$. ($\psi\in W'=\mathcal{R}(W,\mathbb{F}), T'(\psi) \in V'=\mathscr{L}(V,\mathbb{F})$) Example: $T:\mathscr{P}_2(\mathbb{F})\to \mathscr{P}_3(\mathbb{F}),T(f)=xf$ $$ T'(\mathscr{P}_3(\mathbb{F}))'\to (\mathscr{P}_2(\mathbb{F}))',T'(\psi)(f)=\psi(T(f))=\psi(xf) $$ Suppose $\psi(f)=f'(1)\to T(\psi)(f)=(xf)'(1)=f(1)+(xf')(1)=f(1)+f'(1)$ #### Theorem 3.120 Suppose $T\in \mathscr{L}(V,W)$ a) $(S+T)'=S'+T', \forall S\in \mathscr{L}(V,W)$ b) $(\lambda T)'=\lambda T', \forall \lambda\in \mathbb{F}$ c) $(ST)'=T'S', \forall S\in \mathscr{L}(V,W)$ Goal: find $range\ T'$ and $null\ T'$ #### Definition 3.121 Let $U\subseteq V$ be a subspace. The **annihilator** of $U$, denoted by $U^0$ is given by $U^0=\{ \psi\in V'\vert \psi(u)=0\forall u\in U\}$ #### Proposition 3.124 Given $U\subseteq V$ be a subspace. The **annihilator** of $U$, $U^0\subseteq V'$ is a subspace. $$ dim\ U^0=dim\ V-dim\ U=(dim\ V')-dim\ U $$ Sketch of proof: look at $i:U\to V,i(u)=u$, compute $i':V'\to U'$ look at $null\ i'=U^0$ #### Theorem 3.128, 3.130 a) $null\ T'=(range\ T)^0$, $dim (null\ T')=dim\ null\ T+dim\ W-dim\ V$ b) $range\ T'=(null\ T)^0$, $dim (range\ T')=dim (range\ T)$